Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data
- URL: http://arxiv.org/abs/2310.14949v1
- Date: Sun, 15 Oct 2023 18:43:45 GMT
- Title: Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data
- Authors: Sergio F. Chevtchenko, Monalisa C. M. dos Santos, Diego M. Vieira,
Ricardo L. Mota, Elisson Rocha, Bruna V. Cruz, Danilo Ara\'ujo, Ermeson
Andrade
- Abstract summary: In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the support of Internet of Things (IoT) devices, it is possible to
acquire data from degradation phenomena and design data-driven models to
perform anomaly detection in industrial equipment. This approach not only
identifies potential anomalies but can also serve as a first step toward
building predictive maintenance policies. In this work, we demonstrate a novel
anomaly detection system on induction motors used in pumps, compressors, fans,
and other industrial machines. This work evaluates a combination of
pre-processing techniques and machine learning (ML) models with a low
computational cost. We use a combination of pre-processing techniques such as
Fast Fourier Transform (FFT), Wavelet Transform (WT), and binning, which are
well-known approaches for extracting features from raw data. We also aim to
guarantee an optimal balance between multiple conflicting parameters, such as
anomaly detection rate, false positive rate, and inference speed of the
solution. To this end, multiobjective optimization and analysis are performed
on the evaluated models. Pareto-optimal solutions are presented to select which
models have the best results regarding classification metrics and computational
effort. Differently from most works in this field that use publicly available
datasets to validate their models, we propose an end-to-end solution combining
low-cost and readily available IoT sensors. The approach is validated by
acquiring a custom dataset from induction motors. Also, we fuse vibration,
temperature, and noise data from these sensors as the input to the proposed ML
model. Therefore, we aim to propose a methodology general enough to be applied
in different industrial contexts in the future.
Related papers
- An Automated Machine Learning Approach for Detecting Anomalous Peak
Patterns in Time Series Data from a Research Watershed in the Northeastern
United States Critical Zone [3.1747517745997014]
This paper presents an automated machine learning framework designed to assist hydrologists in detecting anomalies in time series data generated by sensors in a research watershed in the northeastern United States critical zone.
The framework specifically focuses on identifying peak-pattern anomalies, which may arise from sensor malfunctions or natural phenomena.
arXiv Detail & Related papers (2023-09-14T19:07:50Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-11T15:49:29Z) - Neural Enhanced Belief Propagation for Multiobject Tracking [8.228150100178983]
We introduce a variant of BP that combines model-based with data-driven MOT.
Our NEBP method improves tracking performance compared to model-based methods.
We evaluate the performance of our NEBP approach for MOT on the nuScenes autonomous driving dataset.
arXiv Detail & Related papers (2022-12-16T08:31:07Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
Multi-object state estimation is a fundamental problem for robotic applications.
We consider learning maximum-likelihood parameters using particle methods.
We apply our method to real data collected from autonomous vehicles.
arXiv Detail & Related papers (2022-12-14T01:21:05Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - Data-Driven Permanent Magnet Temperature Estimation in Synchronous
Motors with Supervised Machine Learning [0.0]
Monitoring the magnet temperature in permanent magnet synchronous motors (PMSMs) for automotive applications is a challenging task.
Overheating results in severe motor deterioration and is thus of high concern for the machine's control strategy and its design.
Several machine learning (ML) models are empirically evaluated on their estimation accuracy for the task of predicting latent high-dynamic magnet temperature profiles.
arXiv Detail & Related papers (2020-01-17T11:41:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.