MetaUE: Model-based Meta-learning for Underwater Image Enhancement
- URL: http://arxiv.org/abs/2303.06543v1
- Date: Sun, 12 Mar 2023 02:38:50 GMT
- Title: MetaUE: Model-based Meta-learning for Underwater Image Enhancement
- Authors: Zhenwei Zhang and Haorui Yan and Ke Tang and Yuping Duan
- Abstract summary: This paper proposes a model-based deep learning method for restoring clean images under various underwater scenarios.
The meta-learning strategy is used to obtain a pre-trained model on the synthetic underwater dataset.
The model is then fine-tuned on real underwater datasets to obtain a reliable underwater image enhancement model, called MetaUE.
- Score: 25.174894007563374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenges in recovering underwater images are the presence of diverse
degradation factors and the lack of ground truth images. Although synthetic
underwater image pairs can be used to overcome the problem of inadequately
observing data, it may result in over-fitting and enhancement degradation. This
paper proposes a model-based deep learning method for restoring clean images
under various underwater scenarios, which exhibits good interpretability and
generalization ability. More specifically, we build up a multi-variable
convolutional neural network model to estimate the clean image, background
light and transmission map, respectively. An efficient loss function is also
designed to closely integrate the variables based on the underwater image
model. The meta-learning strategy is used to obtain a pre-trained model on the
synthetic underwater dataset, which contains different types of degradation to
cover the various underwater environments. The pre-trained model is then
fine-tuned on real underwater datasets to obtain a reliable underwater image
enhancement model, called MetaUE. Numerical experiments demonstrate that the
pre-trained model has good generalization ability, allowing it to remove the
color degradation for various underwater attenuation images such as blue, green
and yellow, etc. The fine-tuning makes the model able to adapt to different
underwater datasets, the enhancement results of which outperform the
state-of-the-art underwater image restoration methods. All our codes and data
are available at \url{https://github.com/Duanlab123/MetaUE}.
Related papers
- Physics-Inspired Synthesized Underwater Image Dataset [9.959844922120528]
PHISWID is a dataset tailored for enhancing underwater image processing through physics-inspired image synthesis.
Our results reveal that even a basic U-Net architecture, when trained with PHISWID, substantially outperforms existing methods in underwater image enhancement.
We intend to release PHISWID publicly, contributing a significant resource to the advancement of underwater imaging technology.
arXiv Detail & Related papers (2024-04-05T10:23:10Z) - Physics Informed and Data Driven Simulation of Underwater Images via
Residual Learning [5.095097384893417]
In general, underwater images suffer from color distortion and low contrast, because light is attenuated and backscattered as it propagates through water.
An existing simple degradation model (similar to atmospheric image "hazing" effects) is not sufficient to properly represent the underwater image degradation.
We propose a deep learning-based architecture to automatically simulate the underwater effects.
arXiv Detail & Related papers (2024-02-07T21:53:28Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - A deep learning approach for marine snow synthesis and removal [55.86191108738564]
This paper proposes a novel method to reduce the marine snow interference using deep learning techniques.
We first synthesize realistic marine snow samples by training a Generative Adversarial Network (GAN) model.
We then train a U-Net model to perform marine snow removal as an image to image translation task.
arXiv Detail & Related papers (2023-11-27T07:19:41Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Adaptive Uncertainty Distribution in Deep Learning for Unsupervised
Underwater Image Enhancement [1.9249287163937976]
One of the main challenges in deep learning-based underwater image enhancement is the limited availability of high-quality training data.
We propose a novel unsupervised underwater image enhancement framework that employs a conditional variational autoencoder (cVAE) to train a deep learning model.
We show that our proposed framework yields competitive performance compared to other state-of-the-art approaches in quantitative as well as qualitative metrics.
arXiv Detail & Related papers (2022-12-18T01:07:20Z) - Domain Adaptation for Underwater Image Enhancement via Content and Style
Separation [7.077978580799124]
Underwater image suffer from color cast, low contrast and hazy effect due to light absorption, refraction and scattering.
Recent learning-based methods demonstrate astonishing performance on underwater image enhancement.
We propose a domain adaptation framework for underwater image enhancement via content and style separation.
arXiv Detail & Related papers (2022-02-17T09:30:29Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Generating Physically-Consistent Satellite Imagery for Climate Visualizations [53.61991820941501]
We train a generative adversarial network to create synthetic satellite imagery of future flooding and reforestation events.
A pure deep learning-based model can generate flood visualizations but hallucinates floods at locations that were not susceptible to flooding.
We publish our code and dataset for segmentation guided image-to-image translation in Earth observation.
arXiv Detail & Related papers (2021-04-10T15:00:15Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
arXiv Detail & Related papers (2020-02-20T07:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.