Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement
- URL: http://arxiv.org/abs/2002.09315v1
- Date: Thu, 20 Feb 2020 07:50:00 GMT
- Title: Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement
- Authors: Yuan Zhou and Kangming Yan
- Abstract summary: We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
- Score: 10.143025577499039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Owing to refraction, absorption, and scattering of light by suspended
particles in water, raw underwater images suffer from low contrast, blurred
details, and color distortion. These characteristics can significantly
interfere with the visibility of underwater images and the result of visual
tasks, such as segmentation and tracking. To address this problem, we propose a
new robust adversarial learning framework via physics model based feedback
control and domain adaptation mechanism for enhancing underwater images to get
realistic results. A new method for simulating underwater-like training dataset
from RGB-D data by underwater image formation model is proposed. Upon the
synthetic dataset, a novel enhancement framework, which introduces a domain
adaptive mechanism as well as a physics model constraint feedback control, is
trained to enhance the underwater scenes. Final enhanced results on synthetic
and real underwater images demonstrate the superiority of the proposed method,
which outperforms nondeep and deep learning methods in both qualitative and
quantitative evaluations. Furthermore, we perform an ablation study to show the
contributions of each component we proposed.
Related papers
- Physics-Inspired Synthesized Underwater Image Dataset [9.959844922120528]
PHISWID is a dataset tailored for enhancing underwater image processing through physics-inspired image synthesis.
Our results reveal that even a basic U-Net architecture, when trained with PHISWID, substantially outperforms existing methods in underwater image enhancement.
We intend to release PHISWID publicly, contributing a significant resource to the advancement of underwater imaging technology.
arXiv Detail & Related papers (2024-04-05T10:23:10Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - A deep learning approach for marine snow synthesis and removal [55.86191108738564]
This paper proposes a novel method to reduce the marine snow interference using deep learning techniques.
We first synthesize realistic marine snow samples by training a Generative Adversarial Network (GAN) model.
We then train a U-Net model to perform marine snow removal as an image to image translation task.
arXiv Detail & Related papers (2023-11-27T07:19:41Z) - Dual Adversarial Resilience for Collaborating Robust Underwater Image
Enhancement and Perception [54.672052775549]
In this work, we introduce a collaborative adversarial resilience network, dubbed CARNet, for underwater image enhancement and subsequent detection tasks.
We propose a synchronized attack training strategy with both visual-driven and perception-driven attacks enabling the network to discern and remove various types of attacks.
Experiments demonstrate that the proposed method outputs visually appealing enhancement images and perform averagely 6.71% higher detection mAP than state-of-the-art methods.
arXiv Detail & Related papers (2023-09-03T06:52:05Z) - WaterFlow: Heuristic Normalizing Flow for Underwater Image Enhancement
and Beyond [52.27796682972484]
Existing underwater image enhancement methods mainly focus on image quality improvement, ignoring the effect on practice.
We propose a normalizing flow for detection-driven underwater image enhancement, dubbed WaterFlow.
Considering the differentiability and interpretability, we incorporate the prior into the data-driven mapping procedure.
arXiv Detail & Related papers (2023-08-02T04:17:35Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Beyond NeRF Underwater: Learning Neural Reflectance Fields for True
Color Correction of Marine Imagery [16.16700041031569]
Underwater imagery often exhibits distorted coloration as a result of light-water interactions.
We propose an algorithm to restore the true color (albedo) in underwater imagery by jointly learning the effects of the medium and neural scene representations.
arXiv Detail & Related papers (2023-04-06T21:29:34Z) - MetaUE: Model-based Meta-learning for Underwater Image Enhancement [25.174894007563374]
This paper proposes a model-based deep learning method for restoring clean images under various underwater scenarios.
The meta-learning strategy is used to obtain a pre-trained model on the synthetic underwater dataset.
The model is then fine-tuned on real underwater datasets to obtain a reliable underwater image enhancement model, called MetaUE.
arXiv Detail & Related papers (2023-03-12T02:38:50Z) - WaterNeRF: Neural Radiance Fields for Underwater Scenes [6.161668246821327]
We advance state-of-the-art in neural radiance fields (NeRFs) to enable physics-informed dense depth estimation and color correction.
Our proposed method, WaterNeRF, estimates parameters of a physics-based model for underwater image formation.
We can produce novel views of degraded as well as corrected underwater images, along with dense depth of the scene.
arXiv Detail & Related papers (2022-09-27T00:53:26Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Perceptual underwater image enhancement with deep learning and physical
priors [35.37760003463292]
We propose two perceptual enhancement models, each of which uses a deep enhancement model with a detection perceptor.
Due to the lack of training data, a hybrid underwater image synthesis model, which fuses physical priors and data-driven cues, is proposed to synthesize training data.
Experimental results show the superiority of our proposed method over several state-of-the-art methods on both real-world and synthetic underwater datasets.
arXiv Detail & Related papers (2020-08-21T22:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.