Learning Deep Intensity Field for Extremely Sparse-View CBCT
Reconstruction
- URL: http://arxiv.org/abs/2303.06681v3
- Date: Thu, 31 Aug 2023 07:26:59 GMT
- Title: Learning Deep Intensity Field for Extremely Sparse-View CBCT
Reconstruction
- Authors: Yiqun Lin, Zhongjin Luo, Wei Zhao, and Xiaomeng Li
- Abstract summary: Sparse-view cone-beam CT (CBCT) reconstruction is an important direction to reduce radiation dose and benefit clinical applications.
Previous voxel-based generation methods represent the CT as discrete voxels.
We develop a novel DIF-Net to perform high-quality CBCT reconstruction from extremely sparse views at an ultrafast speed.
- Score: 10.06715158736831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparse-view cone-beam CT (CBCT) reconstruction is an important direction to
reduce radiation dose and benefit clinical applications. Previous voxel-based
generation methods represent the CT as discrete voxels, resulting in high
memory requirements and limited spatial resolution due to the use of 3D
decoders. In this paper, we formulate the CT volume as a continuous intensity
field and develop a novel DIF-Net to perform high-quality CBCT reconstruction
from extremely sparse (fewer than 10) projection views at an ultrafast speed.
The intensity field of a CT can be regarded as a continuous function of 3D
spatial points. Therefore, the reconstruction can be reformulated as regressing
the intensity value of an arbitrary 3D point from given sparse projections.
Specifically, for a point, DIF-Net extracts its view-specific features from
different 2D projection views. These features are subsequently aggregated by a
fusion module for intensity estimation. Notably, thousands of points can be
processed in parallel to improve efficiency during training and testing. In
practice, we collect a knee CBCT dataset to train and evaluate DIF-Net.
Extensive experiments show that our approach can reconstruct CBCT with high
image quality and high spatial resolution from extremely sparse views within
1.6 seconds, significantly outperforming state-of-the-art methods. Our code
will be available at https://github.com/xmed-lab/DIF-Net.
Related papers
- A Learnt Half-Quadratic Splitting-Based Algorithm for Fast and High-Quality Industrial Cone-beam CT Reconstruction [5.104810959579396]
Industrial X-ray cone-beam CT (XCT) scanners are widely used for scientific imaging and non-destructive characterization.
In order to obtain high-quality reconstruction when using typical analytic algorithms, the scan involves collecting a large number of projections/views.
We propose a half-quadratic splitting-based algorithm that uses convolutional neural networks (CNN) in order to obtain high-quality reconstructions from large sparse-view cone-beam CT (CBCT) measurements.
arXiv Detail & Related papers (2025-01-21T19:15:34Z) - Swap-Net: A Memory-Efficient 2.5D Network for Sparse-View 3D Cone Beam CT Reconstruction [13.891441371598546]
Reconstructing 3D cone beam computed tomography (CBCT) images from a limited set of projections is an inverse problem in many imaging applications.
This paper proposes Swap-Net, a memory-efficient 2.5D network for sparse-view 3D CBCT image reconstruction.
arXiv Detail & Related papers (2024-09-29T08:36:34Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction [12.932897771104825]
radiation dose in computed tomography (CT) examinations can be significantly reduced by intuitively decreasing the number of projection views.
Previous deep learning techniques with sparse-view data require sparse-view/full-view CT image pairs to train the network with supervised manners.
We present a fully unsupervised score-based generative model in sinogram domain for sparse-view CT reconstruction.
arXiv Detail & Related papers (2022-11-25T06:49:18Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - A three-dimensional dual-domain deep network for high-pitch and sparse
helical CT reconstruction [13.470588027095264]
We propose a new GPU implementation of the Katsevich algorithm for helical CT reconstruction.
Our implementation divides the sinograms and reconstructs the CT images pitch by pitch.
By embedding our implementation into the network, we propose an end-to-end deep network for the high pitch helical CT reconstruction.
arXiv Detail & Related papers (2022-01-07T03:26:15Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
In this paper, we advocate that replicating the traditional two stages framework with deep neural networks improves both the interpretability and the accuracy of the results.
Our network operates in two steps: 1) the local computation of the local depth maps with a deep MVS technique, and, 2) the depth maps and images' features fusion to build a single TSDF volume.
In order to improve the matching performance between images acquired from very different viewpoints, we introduce a rotation-invariant 3D convolution kernel called PosedConv.
arXiv Detail & Related papers (2021-08-19T11:33:58Z) - Soft Expectation and Deep Maximization for Image Feature Detection [68.8204255655161]
We propose SEDM, an iterative semi-supervised learning process that flips the question and first looks for repeatable 3D points, then trains a detector to localize them in image space.
Our results show that this new model trained using SEDM is able to better localize the underlying 3D points in a scene.
arXiv Detail & Related papers (2021-04-21T00:35:32Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.