Swap-Net: A Memory-Efficient 2.5D Network for Sparse-View 3D Cone Beam CT Reconstruction
- URL: http://arxiv.org/abs/2410.10836v1
- Date: Sun, 29 Sep 2024 08:36:34 GMT
- Title: Swap-Net: A Memory-Efficient 2.5D Network for Sparse-View 3D Cone Beam CT Reconstruction
- Authors: Xiaojian Xu, Marc Klasky, Michael T. McCann, Jason Hu, Jeffrey A. Fessler,
- Abstract summary: Reconstructing 3D cone beam computed tomography (CBCT) images from a limited set of projections is an inverse problem in many imaging applications.
This paper proposes Swap-Net, a memory-efficient 2.5D network for sparse-view 3D CBCT image reconstruction.
- Score: 13.891441371598546
- License:
- Abstract: Reconstructing 3D cone beam computed tomography (CBCT) images from a limited set of projections is an important inverse problem in many imaging applications from medicine to inertial confinement fusion (ICF). The performance of traditional methods such as filtered back projection (FBP) and model-based regularization is sub-optimal when the number of available projections is limited. In the past decade, deep learning (DL) has gained great popularity for solving CT inverse problems. A typical DL-based method for CBCT image reconstruction is to learn an end-to-end mapping by training a 2D or 3D network. However, 2D networks fail to fully use global information. While 3D networks are desirable, they become impractical as image sizes increase because of the high memory cost. This paper proposes Swap-Net, a memory-efficient 2.5D network for sparse-view 3D CBCT image reconstruction. Swap-Net uses a sequence of novel axes-swapping operations to produce 3D volume reconstruction in an end-to-end fashion without using full 3D convolutions. Simulation results show that Swap-Net consistently outperforms baseline methods both quantitatively and qualitatively in terms of reducing artifacts and preserving details of complex hydrodynamic simulations of relevance to the ICF community.
Related papers
- GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Memory-efficient Segmentation of High-resolution Volumetric MicroCT
Images [11.723370840090453]
We propose a memory-efficient network architecture for 3D high-resolution image segmentation.
The network incorporates both global and local features via a two-stage U-net-based cascaded framework.
Experiments show that it outperforms state-of-the-art 3D segmentation methods in terms of both segmentation accuracy and memory efficiency.
arXiv Detail & Related papers (2022-05-31T16:42:48Z) - DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D
Microscopic Imaging using Digital Holography [3.4635026053111484]
Digital holography is a 3D imaging technique by emitting a laser beam with a plane wavefront to an object and measuring the intensity of the diffracted waveform, called holograms.
Recently, deep learning (DL) methods have been used for more accurate holographic processing.
We propose a new DL architecture based on generative adversarial networks that uses a discriminative network for realizing a semantic measure for reconstruction quality.
arXiv Detail & Related papers (2022-05-25T17:13:45Z) - Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retina OCT Images [33.99874168018807]
In this study, a novel framework based on hybrid 2D-3D convolutional neural networks (CNNs) is proposed to obtain continuous 3D retinal layer surfaces from OCT.
Our framework achieves superior results to state-of-the-art 2D methods in terms of both layer segmentation accuracy and cross-B-scan 3D continuity.
arXiv Detail & Related papers (2022-03-04T15:55:09Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3D hyperspectral image (HSI) reconstruction refers to inverse process of snapshot compressive imaging.
Proposal is for a Spatial/Spectral Invariant Residual U-Net, namely SSI-ResU-Net.
We show that SSI-ResU-Net achieves competing performance with over 77.3% reduction in terms of floating-point operations.
arXiv Detail & Related papers (2021-08-17T16:20:51Z) - 3D U-NetR: Low Dose Computed Tomography Reconstruction via Deep Learning
and 3 Dimensional Convolutions [0.0]
3D U-NetR captures medically critical visual details that cannot be visualized by 2D network.
More importantly, 3D U-NetR captures medically critical visual details that cannot be visualized by 2D network.
arXiv Detail & Related papers (2021-05-28T22:37:50Z) - Pix2Vox++: Multi-scale Context-aware 3D Object Reconstruction from
Single and Multiple Images [56.652027072552606]
We propose a novel framework for single-view and multi-view 3D object reconstruction, named Pix2Vox++.
By using a well-designed encoder-decoder, it generates a coarse 3D volume from each input image.
A multi-scale context-aware fusion module is then introduced to adaptively select high-quality reconstructions for different parts from all coarse 3D volumes to obtain a fused 3D volume.
arXiv Detail & Related papers (2020-06-22T13:48:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.