論文の概要: Kernel Density Bayesian Inverse Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2303.06827v3
- Date: Mon, 04 Nov 2024 17:36:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:57:18.591306
- Title: Kernel Density Bayesian Inverse Reinforcement Learning
- Title(参考訳): カーネル密度ベイズ逆強化学習
- Authors: Aishwarya Mandyam, Didong Li, Diana Cai, Andrew Jones, Barbara E. Engelhardt,
- Abstract要約: 逆強化学習(IRL)法は、エージェントの報酬関数を専門家の行動の実証を用いて推定する。
この研究は、ベイズIRLを様々な領域に適用できる原理的で理論的に基礎付けられた枠組みを導入している。
- 参考スコア(独自算出の注目度): 5.699034783029326
- License:
- Abstract: Inverse reinforcement learning (IRL) methods infer an agent's reward function using demonstrations of expert behavior. A Bayesian IRL approach models a distribution over candidate reward functions, capturing a degree of uncertainty in the inferred reward function. This is critical in some applications, such as those involving clinical data. Typically, Bayesian IRL algorithms require large demonstration datasets, which may not be available in practice. In this work, we incorporate existing domain-specific data to achieve better posterior concentration rates. We study a common setting in clinical and biological applications where we have access to expert demonstrations and known reward functions for a set of training tasks. Our aim is to learn the reward function of a new test task given limited expert demonstrations. Existing Bayesian IRL methods impose restrictions on the form of input data, thus limiting the incorporation of training task data. To better leverage information from training tasks, we introduce kernel density Bayesian inverse reinforcement learning (KD-BIRL). Our approach employs a conditional kernel density estimator, which uses the known reward functions of the training tasks to improve the likelihood estimation across a range of reward functions and demonstration samples. Our empirical results highlight KD-BIRL's faster concentration rate in comparison to baselines, particularly in low test task expert demonstration data regimes. Additionally, we are the first to provide theoretical guarantees of posterior concentration for a Bayesian IRL algorithm. Taken together, this work introduces a principled and theoretically grounded framework that enables Bayesian IRL to be applied across a variety of domains.
- Abstract(参考訳): 逆強化学習(IRL)法は、エージェントの報酬関数を専門家の行動の実証を用いて推定する。
ベイジアンIRLアプローチは、候補報酬関数上の分布をモデル化し、推定報酬関数の不確かさを捉える。
これは臨床データなどいくつかの応用において重要である。
通常、ベイジアンIRLアルゴリズムは大規模なデモンストレーションデータセットを必要とするが、実際には利用できない可能性がある。
本研究では, 既存の領域固有データを組み込んで, 後部濃度を向上する。
臨床・生物学的応用において,一連の訓練課題に対して,専門家によるデモンストレーションや既知報酬機能にアクセス可能な共通条件について検討した。
我々の目的は、限られた専門家によるデモンストレーションから、新しいテストタスクの報酬関数を学習することである。
既存のベイズIRL法は入力データの形式に制限を課し、トレーニングタスクデータの組み入れを制限する。
トレーニングタスクからの情報をより活用するために,カーネル密度ベイズ逆強化学習(KD-BIRL)を導入する。
提案手法では, 条件付きカーネル密度推定器を用いて, トレーニングタスクの既知報酬関数を用いて, 様々な報酬関数と実演サンプルの確率推定を改善する。
実験結果から,KD-BIRLの高濃度化はベースラインよりも高速であることが示唆された。
さらに、ベイジアンIRLアルゴリズムにおいて、後続濃度の理論的保証を初めて提供する。
この研究は、ベイジアンIRLを様々な領域に適用できる原理的、理論的に基礎付けられた枠組みを導入している。
関連論文リスト
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
本稿では,テスト時間適応フレームワークを提案する。
我々は、インスタンスに依存しない履歴サンプルとインスタンスを意識したブースティングサンプルから特徴を検索するための軽量なキー値メモリを維持している。
理論的には,本手法の背後にある合理性を正当化し,アウト・オブ・ディストリビューションとクロスドメイン・データセットの両方において,その有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-20T15:58:43Z) - Is Inverse Reinforcement Learning Harder than Standard Reinforcement
Learning? A Theoretical Perspective [55.36819597141271]
逆強化学習(IRL: Inverse Reinforcement Learning)は、インテリジェントシステム開発において重要な役割を担う。
本稿では、サンプルとランタイムを用いて、バニラのオフラインおよびオンライン設定における効率的なIRLの最初のラインを提供する。
応用として、学習した報酬は適切な保証で他のターゲットMDPに転送可能であることを示す。
論文 参考訳(メタデータ) (2023-11-29T00:09:01Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Learning Representations on the Unit Sphere: Investigating Angular
Gaussian and von Mises-Fisher Distributions for Online Continual Learning [7.145581090959242]
本稿では,新たな損失関数を備えたメモリベース表現学習手法を提案する。
提案手法は,タスク境界がぼやけた標準的な評価シナリオと現実的なシナリオの両方において,現状の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-06T02:38:01Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
逆強化学習(IRL) - エージェントの報酬関数をその振る舞いを観察することから推測する。
本稿では、エージェントの報酬関数を観察することのできないIRLの問題に対処する。
論文 参考訳(メタデータ) (2022-08-09T17:29:49Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
我々はPFN(Presideed Data Fitted Networks)を提案する。
PFNは、大規模機械学習技術におけるインコンテキスト学習を活用して、大規模な後部集合を近似する。
我々は、PFNがガウス過程をほぼ完璧に模倣し、難解問題に対する効率的なベイズ推定を可能にすることを示した。
論文 参考訳(メタデータ) (2021-12-20T13:07:39Z) - Probability Density Estimation Based Imitation Learning [11.262633728487165]
イミテーションラーニング(Imitation Learning, IL)は、エージェントと環境間の相互作用を利用した効果的な学習パラダイムである。
本研究では,IRLに対して,確率密度推定に基づく新たな報酬関数を提案する。
確率密度推定に基づく模倣学習(PDEIL)という「ウォッチ・トライ・ラーン」スタイルのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-13T15:55:38Z) - Efficient Exploration of Reward Functions in Inverse Reinforcement
Learning via Bayesian Optimization [43.51553742077343]
逆強化学習(IRL)は、価値アライメントやデモからのロボット学習など、さまざまなタスクに関係している。
本稿では,ベイズ最適化IRL(BO-IRL)と呼ばれるIRLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-17T10:17:45Z) - f-IRL: Inverse Reinforcement Learning via State Marginal Matching [13.100127636586317]
本稿では,エキスパート状態密度に適合する報酬関数(およびそれに対応するポリシー)を学習する手法を提案する。
本稿では, 勾配勾配勾配から定常報酬関数を復元するアルゴリズムf-IRLを提案する。
提案手法は, サンプル効率と専門トラジェクトリの要求数の観点から, 対向的模倣学習法より優れる。
論文 参考訳(メタデータ) (2020-11-09T19:37:48Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
我々は、最小二乗値スタイルのアルゴリズムで一般的に使用される、より標準的なベルマン誤差の概念の下での反復が、ほぼ最適値関数の学習において強力なPAC保証を提供することを示す。
そこで本稿では,任意の(線形な)報酬関数に対して,最適に近いポリシーを学習するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2020-08-18T04:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。