論文の概要: Dynamic Neural Network for Multi-Task Learning Searching across Diverse
Network Topologies
- arxiv url: http://arxiv.org/abs/2303.06856v1
- Date: Mon, 13 Mar 2023 05:01:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 16:21:50.173862
- Title: Dynamic Neural Network for Multi-Task Learning Searching across Diverse
Network Topologies
- Title(参考訳): 多様なネットワークトポロジを横断するマルチタスク学習のための動的ニューラルネットワーク
- Authors: Wonhyeok Choi, Sunghoon Im
- Abstract要約: 多様なグラフトポロジを持つ複数のタスクに対して最適化された構造を探索する新しいMTLフレームワークを提案する。
我々は、トポロジ的に多様なタスク適応構造を構築するために、読み出し/読み出し層を備えたDAGベースの制限付き中央ネットワークを設計する。
- 参考スコア(独自算出の注目度): 14.574399133024594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we present a new MTL framework that searches for structures
optimized for multiple tasks with diverse graph topologies and shares features
among tasks. We design a restricted DAG-based central network with
read-in/read-out layers to build topologically diverse task-adaptive structures
while limiting search space and time. We search for a single optimized network
that serves as multiple task adaptive sub-networks using our three-stage
training process. To make the network compact and discretized, we propose a
flow-based reduction algorithm and a squeeze loss used in the training process.
We evaluate our optimized network on various public MTL datasets and show ours
achieves state-of-the-art performance. An extensive ablation study
experimentally validates the effectiveness of the sub-module and schemes in our
framework.
- Abstract(参考訳): 本稿では,多彩なグラフトポロジを持つ複数のタスクに最適化された構造を探索し,タスク間で特徴を共有する新しいMTLフレームワークを提案する。
探索空間と時間を制限するとともに、トポロジ的に多様なタスク適応構造を構築するために、読み出し/読み出し層を持つDAGベースの制限型中央ネットワークを設計する。
3段階のトレーニングプロセスを使用して,複数のタスク適応サブネットワークとして機能する,単一の最適化ネットワークを探索する。
ネットワークをコンパクトかつ離散化するために,フローベース還元アルゴリズムとトレーニングプロセスで使用される圧縮損失を提案する。
我々は,様々な公共MTLデータセット上で最適化されたネットワークを評価し,最先端の性能を示す。
広範なアブレーション研究により,サブモジュールとスキームの有効性が実験的に検証された。
関連論文リスト
- SimQ-NAS: Simultaneous Quantization Policy and Neural Architecture
Search [6.121126813817338]
最近のワンショットニューラルネットワーク検索アルゴリズムは、特定のタスクに適したハードウェアに依存しないスーパーネットワークをトレーニングし、異なるハードウェアプラットフォームのための効率的なサブネットワークを抽出する。
我々は,光学習された予測器と組み合わせた多目的探索アルゴリズムを用いることで,サブネットワークアーキテクチャとそれに対応する量子化ポリシーの両方を効率的に探索できることを示す。
論文 参考訳(メタデータ) (2023-12-19T22:08:49Z) - OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural
Architecture Search [79.36688444492405]
once-for-All(OFA)は、異なるリソース制約を持つデバイスのための効率的なアーキテクチャを探索する問題に対処するために設計された、ニューラルネットワーク検索(NAS)フレームワークである。
我々は,探索段階を多目的最適化問題として明示的に考えることにより,効率の追求を一歩進めることを目指している。
論文 参考訳(メタデータ) (2023-03-23T21:30:29Z) - The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
我々は,未使用の重み付きネットワークがその後のタスクを学習するための方法論とネットワーク表現構造を同定する。
提案手法を用いてトレーニングされたネットワークは,タスクのパフォーマンスを犠牲にすることなく,あるいは破滅的な忘れを伴わずに,複数のタスクを学習できることを示す。
論文 参考訳(メタデータ) (2022-07-18T15:07:13Z) - Elastic Architecture Search for Diverse Tasks with Different Resources [87.23061200971912]
本研究では,異なるリソースを持つ多様なタスクを効率的に配置する上で,クラス群に対応するリソース制約や関心のタスクをテスト時に動的に指定する,新たな課題について検討する。
従来のNASアプローチでは、全てのクラスのアーキテクチャを同時に設計することを模索しており、これはいくつかの個別のタスクに最適ではないかもしれない。
本稿では、様々なリソース制約のある多様なタスクに対して、実行時に即時特殊化を可能にする、Elastic Architecture Search (EAS)と呼ばれる斬新で一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T00:54:27Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
マルチタスク学習(Multi-task learning、MTL)は、複数のタスクを共有モデルで同時に学習する機械学習のサブフィールドである。
深層ニューラルネットワークにおけるマルチタスク学習手法の概要を述べる。
論文 参考訳(メタデータ) (2020-09-10T19:31:04Z) - Learning to Branch for Multi-Task Learning [12.49373126819798]
ネットワーク内の共有や分岐の場所を学習するマルチタスク学習アルゴリズムを提案する。
本稿では,木分岐操作をガムベル・ソフトマックスサンプリング手法として用いる新しい木構造設計空間を提案する。
論文 参考訳(メタデータ) (2020-06-02T19:23:21Z) - Dynamic Sparse Training: Find Efficient Sparse Network From Scratch With
Trainable Masked Layers [18.22501196339569]
本稿では、最適ネットワークパラメータとスパースネットワーク構造を共同で見つけることのできる、動的スパーストレーニングと呼ばれる新しいネットワークプルーニングアルゴリズムを提案する。
我々の動的スパーストレーニングアルゴリズムは、非常にスパースなニューラルネットワークモデルを性能損失が少なく容易に訓練できることを実証する。
論文 参考訳(メタデータ) (2020-05-14T11:05:21Z) - Deep Multimodal Neural Architecture Search [178.35131768344246]
様々なマルチモーダル学習タスクのための一般化された深層マルチモーダルニューラルアーキテクチャサーチ(MMnas)フレームワークを考案する。
マルチモーダル入力が与えられたら、まずプリミティブ演算のセットを定義し、その後、ディープエンコーダ-デコーダベースの統一バックボーンを構築する。
統合されたバックボーンの上にタスク固有のヘッドをアタッチして、異なるマルチモーダル学習タスクに取り組む。
論文 参考訳(メタデータ) (2020-04-25T07:00:32Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
プログレッシブニューラルネットワーク学習は、ネットワークのトポロジを漸進的に構築し、トレーニングデータに基づいてパラメータを最適化するアルゴリズムのクラスである。
段階的なトレーニングステップ毎にトレーニングデータのサブセットを活用することで,このプロセスの高速化を提案する。
オブジェクト,シーン,顔の認識における実験結果から,提案手法が最適化手順を大幅に高速化することを示す。
論文 参考訳(メタデータ) (2020-02-17T18:57:33Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。