Dynamic Neural Network for Multi-Task Learning Searching across Diverse
Network Topologies
- URL: http://arxiv.org/abs/2303.06856v1
- Date: Mon, 13 Mar 2023 05:01:50 GMT
- Title: Dynamic Neural Network for Multi-Task Learning Searching across Diverse
Network Topologies
- Authors: Wonhyeok Choi, Sunghoon Im
- Abstract summary: We present a new MTL framework that searches for optimized structures for multiple tasks with diverse graph topologies.
We design a restricted DAG-based central network with read-in/read-out layers to build topologically diverse task-adaptive structures.
- Score: 14.574399133024594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we present a new MTL framework that searches for structures
optimized for multiple tasks with diverse graph topologies and shares features
among tasks. We design a restricted DAG-based central network with
read-in/read-out layers to build topologically diverse task-adaptive structures
while limiting search space and time. We search for a single optimized network
that serves as multiple task adaptive sub-networks using our three-stage
training process. To make the network compact and discretized, we propose a
flow-based reduction algorithm and a squeeze loss used in the training process.
We evaluate our optimized network on various public MTL datasets and show ours
achieves state-of-the-art performance. An extensive ablation study
experimentally validates the effectiveness of the sub-module and schemes in our
framework.
Related papers
- SimQ-NAS: Simultaneous Quantization Policy and Neural Architecture
Search [6.121126813817338]
Recent one-shot Neural Architecture Search algorithms rely on training a hardware-agnostic super-network tailored to a specific task and then extracting efficient sub-networks for different hardware platforms.
We show that by using multi-objective search algorithms paired with lightly trained predictors, we can efficiently search for both the sub-network architecture and the corresponding quantization policy.
arXiv Detail & Related papers (2023-12-19T22:08:49Z) - OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural
Architecture Search [79.36688444492405]
Once-for-All (OFA) is a Neural Architecture Search (NAS) framework designed to address the problem of searching efficient architectures for devices with different resources constraints.
We aim to give one step further in the search for efficiency by explicitly conceiving the search stage as a multi-objective optimization problem.
arXiv Detail & Related papers (2023-03-23T21:30:29Z) - The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
We identify a methodology and network representational structure which allows a pruned network to employ previously unused weights to learn subsequent tasks.
We show that networks trained using our approaches are able to learn multiple tasks, which may be related or unrelated, in parallel or in sequence without sacrificing performance on any task or exhibiting catastrophic forgetting.
arXiv Detail & Related papers (2022-07-18T15:07:13Z) - Elastic Architecture Search for Diverse Tasks with Different Resources [87.23061200971912]
We study a new challenging problem of efficient deployment for diverse tasks with different resources, where the resource constraint and task of interest corresponding to a group of classes are dynamically specified at testing time.
Previous NAS approaches seek to design architectures for all classes simultaneously, which may not be optimal for some individual tasks.
We present a novel and general framework, called Elastic Architecture Search (EAS), permitting instant specializations at runtime for diverse tasks with various resource constraints.
arXiv Detail & Related papers (2021-08-03T00:54:27Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
arXiv Detail & Related papers (2020-09-10T19:31:04Z) - Learning to Branch for Multi-Task Learning [12.49373126819798]
We present an automated multi-task learning algorithm that learns where to share or branch within a network.
We propose a novel tree-structured design space that casts a tree branching operation as a gumbel-softmax sampling procedure.
arXiv Detail & Related papers (2020-06-02T19:23:21Z) - Dynamic Sparse Training: Find Efficient Sparse Network From Scratch With
Trainable Masked Layers [18.22501196339569]
We present a novel network pruning algorithm called Dynamic Sparse Training that can jointly find the optimal network parameters and sparse network structure.
We demonstrate that our dynamic sparse training algorithm can easily train very sparse neural network models with little performance loss.
arXiv Detail & Related papers (2020-05-14T11:05:21Z) - Deep Multimodal Neural Architecture Search [178.35131768344246]
We devise a generalized deep multimodal neural architecture search (MMnas) framework for various multimodal learning tasks.
Given multimodal input, we first define a set of primitive operations, and then construct a deep encoder-decoder based unified backbone.
On top of the unified backbone, we attach task-specific heads to tackle different multimodal learning tasks.
arXiv Detail & Related papers (2020-04-25T07:00:32Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
Progressive Neural Network Learning is a class of algorithms that incrementally construct the network's topology and optimize its parameters based on the training data.
We propose to speed up this process by exploiting subsets of training data at each incremental training step.
Experimental results in object, scene and face recognition problems demonstrate that the proposed approach speeds up the optimization procedure considerably.
arXiv Detail & Related papers (2020-02-17T18:57:33Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.