論文の概要: Learning Distortion Invariant Representation for Image Restoration from
A Causality Perspective
- arxiv url: http://arxiv.org/abs/2303.06859v1
- Date: Mon, 13 Mar 2023 05:04:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 16:22:24.633426
- Title: Learning Distortion Invariant Representation for Image Restoration from
A Causality Perspective
- Title(参考訳): 因果関係からみた画像復元のための学習歪不変表現
- Authors: Xin Li, Bingchen Li, Xin Jin, Cuiling Lan, Zhibo Chen
- Abstract要約: 因果性の観点から,画像復元のための新たなトレーニング戦略を提案する。
提案手法は歪不変表現学習(DIL)と呼ばれ,各歪みのタイプと度合いを1つの特定の共同創設者として扱う。
- 参考スコア(独自算出の注目度): 42.10777921339209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, we have witnessed the great advancement of Deep neural
networks (DNNs) in image restoration. However, a critical limitation is that
they cannot generalize well to real-world degradations with different degrees
or types. In this paper, we are the first to propose a novel training strategy
for image restoration from the causality perspective, to improve the
generalization ability of DNNs for unknown degradations. Our method, termed
Distortion Invariant representation Learning (DIL), treats each distortion type
and degree as one specific confounder, and learns the distortion-invariant
representation by eliminating the harmful confounding effect of each
degradation. We derive our DIL with the back-door criterion in causality by
modeling the interventions of different distortions from the optimization
perspective. Particularly, we introduce counterfactual distortion augmentation
to simulate the virtual distortion types and degrees as the confounders. Then,
we instantiate the intervention of each distortion with a virtual model
updating based on corresponding distorted images, and eliminate them from the
meta-learning perspective. Extensive experiments demonstrate the effectiveness
of our DIL on the generalization capability for unseen distortion types and
degrees. Our code will be available at
https://github.com/lixinustc/Casual-IRDIL.
- Abstract(参考訳): 近年,画像復元におけるディープニューラルネットワーク(dnn)の飛躍的な進歩を目の当たりにしている。
しかし、重要な制限は、異なる次数や型を持つ実世界の分解に対してうまく一般化できないことである。
本稿では,原因不明の劣化に対するDNNの一般化能力を向上させるために,因果的視点から画像復元のための新たなトレーニング戦略を提案する。
本手法は, 歪み不変表現学習 (dil) と呼ばれ, それぞれの歪みタイプと次数を1つの特定の共起体として扱い, 劣化の有害な共起効果を排除することにより歪み不変表現を学習する。
我々は,最適化の観点から異なる歪みの干渉をモデル化することにより,因果関係におけるバックドアの基準を導出する。
特に,共起者としての仮想的歪みタイプと程度をシミュレートするために,反事実的歪み強化を導入する。
そして、対応する歪み画像に基づいて、仮想モデル更新による各歪みの介入をインスタンス化し、メタラーニングの観点から排除する。
広範に実験を行い,非知覚歪型と程度に対する一般化能力に対するdilの有効性を実証した。
私たちのコードはhttps://github.com/lixinustc/Casual-IRDILで公開されます。
関連論文リスト
- Taming Generative Diffusion Prior for Universal Blind Image Restoration [4.106012295148947]
BIR-Dはマルチ誘導ブラインド画像復元を実現することができる。
また、複数の複雑な分解を行うイメージを復元し、実用的な応用を実証することができる。
論文 参考訳(メタデータ) (2024-08-21T02:19:54Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
ブラインド顔復元は通常、トレーニングのための事前定義された劣化モデルで劣化した低品質データを合成する。
トレーニングデータに現実のケースをカバーするために、あらゆる種類の劣化を含めることは、高価で実現不可能である。
本稿では、まず、劣化した画像を粗いが劣化不変な予測に変換し、次に、粗い予測を高品質な画像に復元するために拡張モジュールを使用するロバスト劣化再帰法(DR2)を提案する。
論文 参考訳(メタデータ) (2023-03-13T06:05:18Z) - DaliID: Distortion-Adaptive Learned Invariance for Identification Models [9.502663556403622]
本稿では,同定のための歪み適応型学習不変性(DaliID)モデルを提案する。
DaliIDモデルは、7つのベンチマークデータセット上で、顔認識と人物の再識別の両方のために、最先端(SOTA)を実現する。
論文 参考訳(メタデータ) (2023-02-11T18:19:41Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
我々はRecRecNet(Rectangling Rectification Network)という新しい学習モデルを提案する。
我々のモデルは、ソース構造をターゲット領域に柔軟にワープし、エンドツーエンドの非教師なし変形を実現する。
実験により, 定量評価と定性評価の両面において, 比較法よりも解法の方が優れていることが示された。
論文 参考訳(メタデータ) (2023-01-04T15:12:57Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
本稿では、異なるレンズからの同一シーンの歪み画像の補正結果が同一であるべきという重要な知見に基づいて、新しい自己監督画像補正法を提案する。
我々は、歪みパラメータから修正画像を生成し、再歪み画像を生成するために、微分可能なワープモジュールを利用する。
本手法は,教師付きベースライン法や代表的最先端手法と同等あるいはそれ以上の性能を実現する。
論文 参考訳(メタデータ) (2020-11-30T08:23:25Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - A Deep Ordinal Distortion Estimation Approach for Distortion Rectification [62.72089758481803]
より高精度なパラメータを効率良く得る新しい歪み補正手法を提案する。
本研究では, 局所言語関連推定ネットワークを設計し, 順序歪みを学習し, 現実的な歪み分布を近似する。
歪み情報の冗長性を考慮すると,本手法では歪み画像の一部のみを用いて順序方向の歪み推定を行う。
論文 参考訳(メタデータ) (2020-07-21T10:03:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。