論文の概要: Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection
- arxiv url: http://arxiv.org/abs/2303.06880v1
- Date: Mon, 13 Mar 2023 05:54:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 16:14:05.063566
- Title: Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection
- Title(参考訳): Uni3D:マルチデータセット3Dオブジェクト検出のための統一ベースライン
- Authors: Bo Zhang, Jiakang Yuan, Botian Shi, Tao Chen, Yikang Li, Yu Qiao
- Abstract要約: 現在の3Dオブジェクト検出モデルは、単一のデータセット固有のトレーニングとテストのパラダイムに従っている。
本稿では,複数のデータセットから統合された3次元検出器を訓練する作業について検討する。
単純なデータレベルの修正操作と設計された意味レベルの結合・再結合モジュールを利用するUni3Dを提案する。
- 参考スコア(独自算出の注目度): 34.2238222373818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current 3D object detection models follow a single dataset-specific training
and testing paradigm, which often faces a serious detection accuracy drop when
they are directly deployed in another dataset. In this paper, we study the task
of training a unified 3D detector from multiple datasets. We observe that this
appears to be a challenging task, which is mainly due to that these datasets
present substantial data-level differences and taxonomy-level variations caused
by different LiDAR types and data acquisition standards. Inspired by such
observation, we present a Uni3D which leverages a simple data-level correction
operation and a designed semantic-level coupling-and-recoupling module to
alleviate the unavoidable data-level and taxonomy-level differences,
respectively. Our method is simple and easily combined with many 3D object
detection baselines such as PV-RCNN and Voxel-RCNN, enabling them to
effectively learn from multiple off-the-shelf 3D datasets to obtain more
discriminative and generalizable representations. Experiments are conducted on
many dataset consolidation settings including Waymo-nuScenes, nuScenes-KITTI,
Waymo-KITTI, and Waymo-nuScenes-KITTI consolidations. Their results demonstrate
that Uni3D exceeds a series of individual detectors trained on a single
dataset, with a 1.04x parameter increase over a selected baseline detector. We
expect this work will inspire the research of 3D generalization since it will
push the limits of perceptual performance.
- Abstract(参考訳): 現在の3Dオブジェクト検出モデルは、単一のデータセット固有のトレーニングとテストのパラダイムに従っている。
本稿では,複数のデータセットから統合された3次元検出器を訓練する作業について検討する。
これは、データ集合が、異なるlidarタイプとデータ取得標準によって引き起こされる、実質的なデータレベルの差異と分類学的レベルのバリエーションをもたらすためである。
このような観察から着想を得たuni3dは,単純なデータレベル補正操作と設計したセマンティックレベル結合・再結合モジュールを用いて,それぞれ避けられないデータレベルと分類レベルの差異を緩和する。
本手法は,PV-RCNNやVoxel-RCNNなどの多くの3Dオブジェクト検出ベースラインと簡単に組み合わせられ,複数の既製の3Dデータセットから効果的に学習し,より識別的で一般化可能な表現を得ることができる。
Waymo-nuScenes、nuScenes-KITTI、Waymo-KITTI、Waymo-nuScenes-KITTIの統合など、多くのデータセット統合環境で実験が行われている。
これらの結果は、uni3dが1つのデータセットで訓練された一連の個々の検出器を上回り、選択されたベースライン検出器よりも1.04倍のパラメータが増加することを示している。
この研究は知覚性能の限界を推し進めるため、3D一般化の研究を刺激することを期待している。
関連論文リスト
- Uni$^2$Det: Unified and Universal Framework for Prompt-Guided Multi-dataset 3D Detection [64.08296187555095]
Uni$2$Detは3D検出のための統一的で普遍的なマルチデータセットトレーニングのためのフレームワークである。
マルチデータセット3D検出のためのマルチステージプロンプトモジュールを提案する。
ゼロショットクロスデータセット転送の結果は,提案手法の一般化能力を検証する。
論文 参考訳(メタデータ) (2024-09-30T17:57:50Z) - M&M3D: Multi-Dataset Training and Efficient Network for Multi-view 3D
Object Detection [2.5158048364984564]
カメラのみのデータとBird's-Eye-View Mapを用いたマルチビュー3Dオブジェクト検出のためのネットワーク構造を提案した。
私の仕事は、現在の重要なドメイン適応とビジュアルデータ転送に基づいています。
本研究は,3次元情報を利用可能な意味情報として利用し,視覚的言語伝達設計にブレンドした2次元多視点画像特徴について述べる。
論文 参考訳(メタデータ) (2023-11-02T04:28:51Z) - Every Dataset Counts: Scaling up Monocular 3D Object Detection with Joint Datasets Training [9.272389295055271]
本研究では,多種多様な3次元および2次元データセットを用いたモノクロ3次元物体検出モデルの学習パイプラインについて検討した。
提案フレームワークは,(1)様々なカメラ設定にまたがって機能するロバストなモノクル3Dモデル,(2)異なるクラスアノテーションでデータセットを適応するための選択学習戦略,(3)2Dラベルを用いた擬似3Dトレーニング手法により,2Dラベルのみを含むシーンにおける検出性能を向上させる。
論文 参考訳(メタデータ) (2023-10-02T06:17:24Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
ドメイン外データへの一般化の改善に注力する。
対象を逆向きに変形させるベクトルの集合を学習する。
本研究では,学習したサンプル非依存ベクトルをモデルトレーニング時に利用可能なオブジェクトに適用することにより,対数拡大を行う。
論文 参考訳(メタデータ) (2023-08-29T17:58:55Z) - Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training [44.790636524264]
ポイント・プロンプト・トレーニング(Point Prompt Training)は、3D表現学習の文脈におけるマルチデータセットのシナジスティック学習のための新しいフレームワークである。
シナジスティック学習に関連する負の移動を克服し、一般化可能な表現を生成する。
教師付きマルチデータセットトレーニングを備えた1つの重み付きモデルを用いて、各データセットの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-08-18T17:59:57Z) - MDT3D: Multi-Dataset Training for LiDAR 3D Object Detection
Generalization [3.8243923744440926]
特定の点分布を持つソースデータセットでトレーニングされた3Dオブジェクト検出モデルは、目に見えないデータセットに一般化する上で困難であることが示されている。
我々は、アノテーション付きソースデータセットから利用可能な情報を、MDT3D(Multi-Dataset Training for 3D Object Detection)メソッドで活用する。
トレーニング中にデータセットの混合をどのように管理し、最後にクロスデータセット拡張メソッド、すなわちクロスデータセットオブジェクトインジェクションを導入するかを示します。
論文 参考訳(メタデータ) (2023-08-02T08:20:00Z) - Learning 3D Human Pose Estimation from Dozens of Datasets using a
Geometry-Aware Autoencoder to Bridge Between Skeleton Formats [80.12253291709673]
本稿では,アフィン結合型オートエンコーダ(ACAE)法を提案する。
このアプローチは、28人の人間のポーズデータセットを使って1つのモデルを監督する、極端なマルチデータセット体制にスケールします。
論文 参考訳(メタデータ) (2022-12-29T22:22:49Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
本稿では,LiDAR 画像検出器に追従する特徴や応答をシミュレートすることで,単一モダリティ (LiDAR) 3次元物体検出器を高速化する新しい手法を提案する。
このアプローチでは、単一モダリティ検出器をトレーニングする場合のみ、LiDARイメージデータを必要とし、十分にトレーニングされた場合には、推論時にのみLiDARデータが必要である。
nuScenesデータセットの実験結果から,本手法はSOTA LiDARのみの3D検出器よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-06-30T01:44:30Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
低コストのモノクル3D物体検出は、自律運転において基本的な役割を果たす。
DFR-Netという動的特徴反射ネットワークを導入する。
我々は、KITTIテストセットの全ての単分子3D物体検出器の中で、第1位にランク付けする。
論文 参考訳(メタデータ) (2021-12-28T07:31:18Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。