AGTGAN: Unpaired Image Translation for Photographic Ancient Character
Generation
- URL: http://arxiv.org/abs/2303.07012v1
- Date: Mon, 13 Mar 2023 11:18:41 GMT
- Title: AGTGAN: Unpaired Image Translation for Photographic Ancient Character
Generation
- Authors: Hongxiang Huang, Daihui Yang, Gang Dai, Zhen Han, Yuyi Wang, Kin-Man
Lam, Fan Yang, Shuangping Huang, Yongge Liu, Mengchao He
- Abstract summary: We propose an unsupervised generative adversarial network called AGTGAN.
By explicit global and local glyph shape style modeling, our method can generate characters with diverse glyphs and realistic textures.
With our generated images, experiments on the largest photographic oracle bone character dataset show that our method can achieve a significant increase in classification accuracy, up to 16.34%.
- Score: 27.77329906930072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of ancient writings has great value for archaeology and philology.
Essential forms of material are photographic characters, but manual
photographic character recognition is extremely time-consuming and
expertise-dependent. Automatic classification is therefore greatly desired.
However, the current performance is limited due to the lack of annotated data.
Data generation is an inexpensive but useful solution for data scarcity.
Nevertheless, the diverse glyph shapes and complex background textures of
photographic ancient characters make the generation task difficult, leading to
the unsatisfactory results of existing methods. In this paper, we propose an
unsupervised generative adversarial network called AGTGAN. By the explicit
global and local glyph shape style modeling followed by the stroke-aware
texture transfer, as well as an associate adversarial learning mechanism, our
method can generate characters with diverse glyphs and realistic textures. We
evaluate our approach on the photographic ancient character datasets, e.g.,
OBC306 and CSDD. Our method outperforms the state-of-the-art approaches in
various metrics and performs much better in terms of the diversity and
authenticity of generated samples. With our generated images, experiments on
the largest photographic oracle bone character dataset show that our method can
achieve a significant increase in classification accuracy, up to 16.34%.
Related papers
- Deep Image Composition Meets Image Forgery [0.0]
Image forgery has been studied for many years.
Deep learning models require large amounts of labeled data for training.
We use state of the art image composition deep learning models to generate spliced images close to the quality of real-life manipulations.
arXiv Detail & Related papers (2024-04-03T17:54:37Z) - ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
We present ENTED, a new framework for blind face restoration that aims to restore high-quality and realistic portrait images.
We utilize a texture extraction and distribution framework to transfer high-quality texture features between the degraded input and reference image.
The StyleGAN-like architecture in our framework requires high-quality latent codes to generate realistic images.
arXiv Detail & Related papers (2024-01-13T04:54:59Z) - Knowledge-Aware Artifact Image Synthesis with LLM-Enhanced Prompting and
Multi-Source Supervision [5.517240672957627]
We propose a novel knowledge-aware artifact image synthesis approach that brings lost historical objects accurately into their visual forms.
Compared to existing approaches, our proposed model produces higher-quality artifact images that align better with the implicit details and historical knowledge contained within written documents.
arXiv Detail & Related papers (2023-12-13T11:03:07Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
Existing generated image detection methods detect visual artifacts in generated images or learn discriminative features from both real and generated images by massive training.
This paper approaches the generated image detection problem from a new perspective: Start from real images.
By finding the commonality of real images and mapping them to a dense subspace in feature space, the goal is that generated images, regardless of their generative model, are then projected outside the subspace.
arXiv Detail & Related papers (2023-11-02T03:09:37Z) - Fill-Up: Balancing Long-Tailed Data with Generative Models [11.91669614267993]
This paper proposes a new image synthesis pipeline for long-tailed situations using Textual Inversion.
We show that generated images from textual-inverted text tokens effectively aligns with the real domain.
We also show that real-world data imbalance scenarios can be successfully mitigated by filling up the imbalanced data with synthetic images.
arXiv Detail & Related papers (2023-06-12T16:01:20Z) - Language Does More Than Describe: On The Lack Of Figurative Speech in
Text-To-Image Models [63.545146807810305]
Text-to-image diffusion models can generate high-quality pictures from textual input prompts.
These models have been trained using text data collected from content-based labelling protocols.
We characterise the sentimentality, objectiveness and degree of abstraction of publicly available text data used to train current text-to-image diffusion models.
arXiv Detail & Related papers (2022-10-19T14:20:05Z) - Re-Imagen: Retrieval-Augmented Text-to-Image Generator [58.60472701831404]
Retrieval-Augmented Text-to-Image Generator (Re-Imagen)
Retrieval-Augmented Text-to-Image Generator (Re-Imagen)
arXiv Detail & Related papers (2022-09-29T00:57:28Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
Controllable person image generation aims to produce realistic human images with desirable attributes.
We introduce a novel Spatially-Adaptive Warped Normalization (SAWN), which integrates a learned flow-field to warp modulation parameters.
We propose a novel self-training part replacement strategy to refine the pretrained model for the texture-transfer task.
arXiv Detail & Related papers (2021-05-31T07:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.