論文の概要: A Survey of Graph Prompting Methods: Techniques, Applications, and
Challenges
- arxiv url: http://arxiv.org/abs/2303.07275v2
- Date: Wed, 31 May 2023 03:49:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 02:48:56.469759
- Title: A Survey of Graph Prompting Methods: Techniques, Applications, and
Challenges
- Title(参考訳): グラフプロンプト手法に関する調査:技術,応用,課題
- Authors: Xuansheng Wu, Kaixiong Zhou, Mingchen Sun, Xin Wang, Ninghao Liu
- Abstract要約: ラベル付きデータに制限のある一般化可能なモデルを学習する手段として,「事前訓練,プロンプト,予測訓練」が人気を集めている。
複雑なタスクにおいて、プロンプトの設計は困難で時間を要するプロセスになり得る。
この調査は、将来の方法論開発を促進するために、グラフと設計の間のギャップを埋める。
- 参考スコア(独自算出の注目度): 25.32529044997131
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The recent "pre-train, prompt, predict training" paradigm has gained
popularity as a way to learn generalizable models with limited labeled data.
The approach involves using a pre-trained model and a prompting function that
applies a template to input samples, adding indicative context and
reformulating target tasks as the pre-training task. However, the design of
prompts could be a challenging and time-consuming process in complex tasks. The
limitation can be addressed by using graph data, as graphs serve as structured
knowledge repositories by explicitly modeling the interaction between entities.
In this survey, we review prompting methods from the graph perspective, where
prompting functions are augmented with graph knowledge. In particular, we
introduce the basic concepts of graph prompt learning, organize the existing
work of designing graph prompting functions, and describe their applications
and future challenges. This survey will bridge the gap between graphs and
prompt design to facilitate future methodology development.
- Abstract(参考訳): 最近の"pre-train, prompt, predict training"パラダイムは、ラベル付きデータに制限のある一般化可能なモデルを学習する方法として人気を集めている。
このアプローチでは、事前学習されたモデルと、テンプレートを入力サンプルに適用するプロンプト関数を使用し、指示的コンテキストを追加し、事前学習タスクとしてターゲットタスクを再構成する。
しかし、複雑なタスクでは、プロンプトの設計は困難で時間がかかるかもしれない。
グラフはエンティティ間の相互作用を明示的にモデル化することで構造化された知識リポジトリとして機能する。
本稿では,グラフの知識によって関数が拡張されるグラフの観点から,プロンプトの手法を概観する。
特に,グラフプロンプト学習の基本概念を紹介し,グラフプロンプト関数の設計に関する既存の作業を整理し,それらの応用と今後の課題について述べる。
この調査は、将来の方法論開発を促進するために、グラフと設計の間のギャップを埋める。
関連論文リスト
- Instance-Aware Graph Prompt Learning [71.26108600288308]
本稿では,インスタンス対応グラフプロンプト学習(IA-GPL)について紹介する。
このプロセスでは、軽量アーキテクチャを使用して各インスタンスの中間プロンプトを生成する。
複数のデータセットと設定で実施された実験は、最先端のベースラインと比較して、IA-GPLの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-26T18:38:38Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
大規模"事前訓練と迅速な学習"パラダイムは、顕著な適応性を示している。
この調査は、この分野における100以上の関連する研究を分類し、一般的な設計原則と最新の応用を要約する。
論文 参考訳(メタデータ) (2024-08-26T06:36:42Z) - ProG: A Graph Prompt Learning Benchmark [17.229372585695092]
グラフプロンプト学習が「プレトレイン・ファインチューン」に代わる有望な選択肢として登場
グラフプロンプト学習のための総合ベンチマークを初めて導入する。
本稿では,さまざまなグラフプロンプトモデルの実行を合理化する,使いやすいオープンソースライブラリである'ProG'を紹介する。
論文 参考訳(メタデータ) (2024-06-08T04:17:48Z) - Generalized Graph Prompt: Toward a Unification of Pre-Training and Downstream Tasks on Graphs [20.406549548630156]
GraphPromptは、グラフに関する新しい事前トレーニングおよびプロンプトフレームワークである。
トレーニング済みタスクとダウンストリームタスクを共通タスクテンプレートに統合する。
また、学習可能なプロンプトを使用して、トレーニング済みモデルから最も関連性の高い知識を見つけるために、下流タスクを支援する。
論文 参考訳(メタデータ) (2023-11-26T14:35:28Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
ファインチューニングはリソース集約型であり、大きなモデルのコピーを複数保存する必要がある。
ファインチューニングの代替として,ディープグラフプロンプトチューニングと呼ばれる新しい手法を提案する。
事前学習したパラメータを凍結し、追加したトークンのみを更新することにより、フリーパラメータの数を減らし、複数のモデルコピーを不要にする。
論文 参考訳(メタデータ) (2023-09-18T20:12:17Z) - All in One: Multi-task Prompting for Graph Neural Networks [30.457491401821652]
本稿では,グラフモデルのための新しいマルチタスクプロンプト手法を提案する。
まず、グラフプロンプトと言語プロンプトのフォーマットを、プロンプトトークン、トークン構造、挿入パターンで統一する。
次に、様々なグラフアプリケーションのタスク空間を調査し、下流の問題をグラフレベルのタスクに再構成する。
論文 参考訳(メタデータ) (2023-07-04T06:27:31Z) - Unsupervised Task Graph Generation from Instructional Video Transcripts [53.54435048879365]
本研究では,実世界の活動を行う指導ビデオのテキスト書き起こしを提供する環境について考察する。
目標は、これらの重要なステップ間の依存関係関係と同様に、タスクに関連する重要なステップを特定することです。
本稿では,命令調整言語モデルの推論能力とクラスタリングとランキングコンポーネントを組み合わせたタスクグラフ生成手法を提案する。
論文 参考訳(メタデータ) (2023-02-17T22:50:08Z) - GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural
Networks [16.455234748896157]
GraphPromptは、グラフに関する新しい事前トレーニングおよびプロンプトフレームワークである。
トレーニング済みタスクとダウンストリームタスクを共通タスクテンプレートに統合する。
また、トレーニング前のモデルから最も関連性の高い知識を見つけるために、下流タスクを支援するための学習可能なプロンプトも採用している。
論文 参考訳(メタデータ) (2023-02-16T02:51:38Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。