論文の概要: Architext: Language-Driven Generative Architecture Design
- arxiv url: http://arxiv.org/abs/2303.07519v3
- Date: Wed, 3 May 2023 09:29:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 17:46:04.503331
- Title: Architext: Language-Driven Generative Architecture Design
- Title(参考訳): Architext: 言語駆動生成アーキテクチャ設計
- Authors: Theodoros Galanos, Antonios Liapis and Georgios N. Yannakakis
- Abstract要約: Architextは、大規模な言語モデルに入力として与えられる自然言語プロンプトのみを持つ設計生成を可能にする。
我々は,多くの事前学習言語モデルに対する意味的精度と多様性に着目し,Architextのダウンストリームタスク性能を徹底的に定量的に評価する。
Architextモデルは、特定の設計タスクを学習し、有効な住宅レイアウトを100%近い速度で生成することができる。
- 参考スコア(独自算出の注目度): 1.393683063795544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Architectural design is a highly complex practice that involves a wide
diversity of disciplines, technologies, proprietary design software, expertise,
and an almost infinite number of constraints, across a vast array of design
tasks. Enabling intuitive, accessible, and scalable design processes is an
important step towards performance-driven and sustainable design for all. To
that end, we introduce Architext, a novel semantic generation assistive tool.
Architext enables design generation with only natural language prompts, given
to large-scale Language Models, as input. We conduct a thorough quantitative
evaluation of Architext's downstream task performance, focusing on semantic
accuracy and diversity for a number of pre-trained language models ranging from
120 million to 6 billion parameters. Architext models are able to learn the
specific design task, generating valid residential layouts at a near 100% rate.
Accuracy shows great improvement when scaling the models, with the largest
model (GPT-J) yielding impressive accuracy ranging between 25% to over 80% for
different prompt categories. We open source the finetuned Architext models and
our synthetic dataset, hoping to inspire experimentation in this exciting area
of design research.
- Abstract(参考訳): アーキテクチャ設計は、幅広い分野、技術、プロプライエタリなデザインソフトウェア、専門知識、そしてほぼ無限の制約を含む非常に複雑なプラクティスである。
直感的でアクセシブルでスケーラブルな設計プロセスを実現することは、パフォーマンス駆動で持続可能な設計への重要なステップです。
そこで本研究では,新しい意味生成支援ツールであるarchitextを紹介する。
Architextは、大規模な言語モデルに入力として与えられる自然言語プロンプトのみを持つ設計生成を可能にする。
我々は,1億2000万から60億のパラメータを含む事前学習された言語モデルの意味的精度と多様性に着目し,Architextの下流タスク性能の詳細な定量的評価を行う。
Architextモデルは、特定の設計タスクを学習し、有効な住宅レイアウトを100%近い速度で生成することができる。
大きなモデル(gpt-j)では、さまざまなプロンプトカテゴリで25%から80%以上という、印象的な精度を実現している。
私たちは、このエキサイティングなデザイン研究領域で実験を刺激したいと考えている、微調整Architextモデルと合成データセットをオープンソースにしています。
関連論文リスト
- DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation [25.532400438564334]
DiffDesignは、メタプリミティブを持つ制御可能な拡散モデルであり、効率的な内部設計生成を実現する。
具体的には,画像データセット上で事前学習した2次元拡散モデルの生成先行をレンダリングバックボーンとして利用する。
さらに、外観、ポーズ、サイズといったデザイン属性を横断的に制御し、視点整合性を強制する最適な転送ベースのアライメントモジュールを導入することで、デノナイジングプロセスをガイドする。
論文 参考訳(メタデータ) (2024-11-25T11:36:34Z) - GLDesigner: Leveraging Multi-Modal LLMs as Designer for Enhanced Aesthetic Text Glyph Layouts [53.568057283934714]
コンテンツ対応のテキストロゴレイアウトを生成するVLMベースのフレームワークを提案する。
本稿では,複数のグリフ画像の同時処理における計算量を削減するための2つのモデル手法を提案する。
アウトモデルのインストラクションチューニングを支援するために,既存の公開データセットよりも5倍大きい2つの拡張テキストロゴデータセットを構築した。
論文 参考訳(メタデータ) (2024-11-18T10:04:10Z) - MetaDesigner: Advancing Artistic Typography through AI-Driven, User-Centric, and Multilingual WordArt Synthesis [65.78359025027457]
MetaDesignerは、Large Language Models(LLM)の強みを活用して、ユーザエンゲージメントを中心としたデザインパラダイムを推進することによって、芸術的なタイポグラフィに革命をもたらす。
総合的なフィードバックメカニズムは、マルチモーダルモデルとユーザ評価からの洞察を活用して、設計プロセスを反復的に洗練し、拡張する。
実証的な検証は、MetaDesignerが様々なWordArtアプリケーションに効果的に機能し、審美的に魅力的でコンテキストに敏感な結果を生み出す能力を強調している。
論文 参考訳(メタデータ) (2024-06-28T11:58:26Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
本研究では,グラフィックレイアウトの自動生成のための統合フレームワークを提案する。
データ駆動方式では、レイアウトを生成するために構造化テキスト(JSONフォーマット)とビジュアルインストラクションチューニングを用いる。
我々は、大規模な実験を行い、パブリックなマルチモーダルレイアウト生成ベンチマーク上で、最先端(SOTA)性能を達成した。
論文 参考訳(メタデータ) (2024-06-05T03:05:52Z) - Generative Design through Quality-Diversity Data Synthesis and Language Models [5.196236145367301]
エンジニアリングアプリケーションにおける2つの基本的な課題は、ハイパフォーマンスで多様なデータセットの取得と、生成された設計における正確な制約への固執である。
アーキテクチャ設計におけるこれらの課題に取り組むために,最適化,制約満足度,言語モデルを組み合わせた新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-16T11:30:08Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Designはパーソナライズされたインテリアデザイナで、自然言語によるコミュニケーションを通じて設計目標の生成と視覚化を可能にする。
I-Designは、対話や論理的推論に従事する大きな言語モデルエージェントのチームから始まる。
最終的な設計は、既存のオブジェクトデータベースから資産を取り出し、統合することで、3Dで構築されます。
論文 参考訳(メタデータ) (2024-04-03T16:17:53Z) - From Concept to Manufacturing: Evaluating Vision-Language Models for Engineering Design [5.268919870502001]
本稿では,視覚言語モデル(VLM)を工学設計タスクの範囲で総合的に評価する。
本稿では, スケッチ類似性解析, CAD生成, トポロジ最適化, 製造性評価, 工学教科書問題などの設計課題における2つのVLM, GPT-4V, LLaVA 1.6 34Bの性能評価を行う。
論文 参考訳(メタデータ) (2023-11-21T15:20:48Z) - Opportunities for Large Language Models and Discourse in Engineering
Design [0.0]
談話はエンジニアリング設計プロセスの中核と見なされるべきであり、したがってデジタルアーティファクトで表現されるべきである、と我々は主張する。
シミュレーション,実験,トポロジ最適化,その他のプロセスステップを,機械操作可能な,談話中心の設計プロセスに統合する方法について述べる。
論文 参考訳(メタデータ) (2023-06-15T14:46:44Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
本稿では,これらの異なる視覚言語タスクの協調学習に驚くほど有効であるマルチモーダルタスクのためのデコーダのみのモデルを提案する。
これらの多様な目的の合同学習は単純で効果的であり、これらのタスク間でのモデルの重量共有を最大化することを示した。
我々のモデルは,画像テキストとテキスト画像検索,ビデオ質問応答,オープン語彙検出タスクにおける技術の現状を達成し,より大きく,より広範囲に訓練された基礎モデルよりも優れている。
論文 参考訳(メタデータ) (2023-03-29T16:42:30Z) - What Language Model to Train if You Have One Million GPU Hours? [54.32062236748831]
モデリングの実践の違いがゼロショット一般化に与える影響について検討する。
また、多言語モデルの性能と、英語のみとの比較についても検討する。
私たちのモデルとコードは、https://huggingface.co/bigscience.comでオープンソース化されています。
論文 参考訳(メタデータ) (2022-10-27T13:43:27Z) - AIRCHITECT: Learning Custom Architecture Design and Mapping Space [2.498907460918493]
我々は機械学習モデルをトレーニングし、カスタムアーキテクチャの設計とマッピング空間の最適パラメータを予測する。
最適設計およびマッピングパラメータの予測を「一般化」するために,設計空間を捕捉し,モデルを訓練することは可能であることを示す。
私たちはAIRCHITECTと呼ばれるカスタムネットワークアーキテクチャをトレーニングし、94.3%のテスト精度でアーキテクチャ設計空間を学習することができる。
論文 参考訳(メタデータ) (2021-08-16T05:05:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。