Entangled time-crystal phase in an open quantum light-matter system
- URL: http://arxiv.org/abs/2303.07725v3
- Date: Fri, 19 Apr 2024 12:34:23 GMT
- Title: Entangled time-crystal phase in an open quantum light-matter system
- Authors: Robert Mattes, Igor Lesanovsky, Federico Carollo,
- Abstract summary: Time-crystals are nonequilibrium many-body phases in which the state of the system dynamically approaches a limit cycle.
We show that time-crystal phases in collective open quantum systems can sustain quantum correlations, including entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-crystals are nonequilibrium many-body phases in which the state of the system dynamically approaches a limit cycle. While these phases are recently in the focus of intensive research, it is still far from clear whether they can host quantum correlations. In fact, mostly classical correlations have been observed so far and time-crystals appear to be effectively classical high-entropy phases. Here, we consider the nonequilibrium behavior of an open quantum light-matter system, realizable in current experiments, which maps onto a paradigmatic time-crystal model after an adiabatic elimination of the light field. The system displays a bistable regime, with coexistent time-crystal and stationary phases, terminating at a tricritical point from which a second-order phase transition line departs. While light and matter are uncorrelated in the stationary phase, the time-crystal phase features bipartite correlations, both of quantum and classical nature. Our work unveils that time-crystal phases in collective open quantum systems can sustain quantum correlations, including entanglement, and are thus more than effectively classical many-body phases.
Related papers
- Thermodynamics of coupled time crystals with an application to energy storage [0.0]
We study the thermodynamics and fluctuating behavior of two interacting boundary time crystals.
We exploit our theoretical derivation to explore possible applications of time crystals as quantum batteries.
arXiv Detail & Related papers (2024-11-07T16:21:26Z) - Experimental Realization of Discrete Time Quasi-Crystals [2.574124686754315]
Floquet (periodically driven) systems can give rise to unique non-equilibrium phases of matter without equilibrium analogs.
We show that the multi-frequency nature of the quasi-periodic drive allows for the formation of diverse patterns associated with different discrete time quasi-crystalline phases.
arXiv Detail & Related papers (2024-03-26T16:29:03Z) - Observation of a time crystal comb in a driven-dissipative system with Rydberg gas [2.4898174182192974]
Time crystals manifest as stable and periodic behavior that breaks time translation symmetry.
In an open quantum system, many-body interaction subjected to dissipation allows one to develop the time crystalline order in an unprecedented way.
We report the observation of a time crystal comb in the continuously driven-dissipative and strongly interacting Rydberg thermal gas.
arXiv Detail & Related papers (2024-02-20T16:09:29Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Prolonging a discrete time crystal by quantum-classical feedback [0.0]
We propose a timeperiodic scheme that leverages quantum-classical feedback protocols in subregions of the system to enhance a time crystal signal significantly exceeding the decoherence time of the device.
Based on classical simulation quantum circuit realizations, we find that this approach is suitable for implementation on existing quantum phases and hardware.
arXiv Detail & Related papers (2023-09-05T11:43:26Z) - The role of fluctuations in quantum and classical time crystals [58.720142291102135]
We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs.
This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.
arXiv Detail & Related papers (2022-03-10T19:00:01Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Noise-Resilient Phase Transitions and Limit-Cycles in Coupled Kerr
Oscillators [0.0]
Driven-dissipative quantum many-body systems have been the subject of many studies in recent years.
We investigate the Green's function and correlation of the cavity modes in different regions.
Our results shed light on the emergence of dissipative phase transitions in open quantum systems.
arXiv Detail & Related papers (2021-06-08T01:46:01Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.