Quantum Dissipative Continuous Time Crystals
- URL: http://arxiv.org/abs/2503.16141v2
- Date: Thu, 03 Apr 2025 12:41:45 GMT
- Title: Quantum Dissipative Continuous Time Crystals
- Authors: Felix Russo, Thomas Pohl,
- Abstract summary: We find two distinct time-crystal phases that cannot be described within mean-field theory.<n>One of them emerges only in the presence of quantum fluctuations.<n>The proposed model applies directly to the laser-driven dynamics of interacting Rydberg states in neutral atom arrays.
- Score: 0.09208007322096533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Continuous time crystals, i.e., nonequilibrium phases with a spontaneously broken continuous time-translational symmetry, have been studied and recently observed in the long-time dynamics of open quantum systems. Here, we investigate a lattice of interacting three-level systems and find two distinct time-crystal phases that cannot be described within mean-field theory. Remarkably, one of them emerges only in the presence of quantum fluctuations. Our findings extend explorations of continuous time-translational symmetry breaking in dissipative systems beyond the classical phenomenology of periodic orbits in a low-dimensional nonlinear system. The proposed model applies directly to the laser-driven dynamics of interacting Rydberg states in neutral atom arrays and suggests that the predicted time-crystal phases are observable in such experiments.
Related papers
- Thermodynamics of coupled time crystals with an application to energy storage [0.0]
We study the thermodynamics and fluctuating behavior of two interacting boundary time crystals.
We exploit our theoretical derivation to explore possible applications of time crystals as quantum batteries.
arXiv Detail & Related papers (2024-11-07T16:21:26Z) - Observation of a time crystal comb in a driven-dissipative system with Rydberg gas [2.4898174182192974]
Time crystals manifest as stable and periodic behavior that breaks time translation symmetry.
In an open quantum system, many-body interaction subjected to dissipation allows one to develop the time crystalline order in an unprecedented way.
We report the observation of a time crystal comb in the continuously driven-dissipative and strongly interacting Rydberg thermal gas.
arXiv Detail & Related papers (2024-02-20T16:09:29Z) - Measurement-induced Clock in a Lattice Ring of Non-interacting Electrons [0.0]
We study the emergence of periodicity in a non-interacting steady-state quantum system inspired by quantum time crystals' spontaneous time-translation symmetry breaking.
Our analysis uncovers time-periodic structures in steady-state two-time correlation functions, with periodicity linked to the system's group velocity.
arXiv Detail & Related papers (2023-12-29T16:37:53Z) - Nonequilibrium transition between dissipative time crystals [0.9217021281095907]
We show a dissipative phase transition in a driven nonlinear quantum oscillator in which a discrete time-translation symmetry is spontaneously broken in two different ways.
The corresponding regimes display either discrete or incommensurate time-crystal order, which we analyze numerically and analytically.
arXiv Detail & Related papers (2023-08-23T11:59:31Z) - Dissipative time crystal in a strongly interacting Rydberg gas [14.07614057267722]
We report the experimental observation of such dissipative time crystalline order in a room-temperature atomic gas.
The observed limit cycles arise from the coexistence and competition between distinct Rydberg components.
The nondecaying autocorrelation of the oscillation, together with the robustness against temporal noises, indicate the establishment of true long-range temporal order.
arXiv Detail & Related papers (2023-05-31T17:44:32Z) - Entangled time-crystal phase in an open quantum light-matter system [0.0]
Time-crystals are nonequilibrium many-body phases in which the state of the system dynamically approaches a limit cycle.
We show that time-crystal phases in collective open quantum systems can sustain quantum correlations, including entanglement.
arXiv Detail & Related papers (2023-03-14T09:15:50Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Nonlinear interferometry beyond classical limit facilitated by cyclic
dynamics [18.236929748580867]
We present an approach that is broadly applicable to cyclic systems for implementing nonlinear interferometry without invoking time reversal.
We implement such a 'closed-loop' nonlinear interferometer and achieve a metrological gain of $3.87_-0.95+0.91$ decibels over the classical limit for a total of 26500 atoms.
arXiv Detail & Related papers (2021-11-01T09:41:34Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.