FPUS23: An Ultrasound Fetus Phantom Dataset with Deep Neural Network
Evaluations for Fetus Orientations, Fetal Planes, and Anatomical Features
- URL: http://arxiv.org/abs/2303.07852v2
- Date: Wed, 7 Jun 2023 14:56:10 GMT
- Title: FPUS23: An Ultrasound Fetus Phantom Dataset with Deep Neural Network
Evaluations for Fetus Orientations, Fetal Planes, and Anatomical Features
- Authors: Bharath Srinivas Prabakaran and Paul Hamelmann and Erik Ostrowski and
Muhammad Shafique
- Abstract summary: We present a novel fetus phantom ultrasound dataset, FPUS23, which can be used to identify the correct diagnostic planes for estimating fetal biometric values.
The entire dataset is composed of 15,728 images, which are used to train four different Deep Neural Network models.
We have also evaluated the models trained using our FPUS23 dataset, to show that the information learned by these models can be used to substantially increase the accuracy on real-world ultrasound fetus datasets.
- Score: 10.404128105946583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrasound imaging is one of the most prominent technologies to evaluate the
growth, progression, and overall health of a fetus during its gestation.
However, the interpretation of the data obtained from such studies is best left
to expert physicians and technicians who are trained and well-versed in
analyzing such images. To improve the clinical workflow and potentially develop
an at-home ultrasound-based fetal monitoring platform, we present a novel fetus
phantom ultrasound dataset, FPUS23, which can be used to identify (1) the
correct diagnostic planes for estimating fetal biometric values, (2) fetus
orientation, (3) their anatomical features, and (4) bounding boxes of the fetus
phantom anatomies at 23 weeks gestation. The entire dataset is composed of
15,728 images, which are used to train four different Deep Neural Network
models, built upon a ResNet34 backbone, for detecting aforementioned fetus
features and use-cases. We have also evaluated the models trained using our
FPUS23 dataset, to show that the information learned by these models can be
used to substantially increase the accuracy on real-world ultrasound fetus
datasets. We make the FPUS23 dataset and the pre-trained models publicly
accessible at https://github.com/bharathprabakaran/FPUS23, which will further
facilitate future research on fetal ultrasound imaging and analysis.
Related papers
- Measuring proximity to standard planes during fetal brain ultrasound scanning [8.328549443700858]
This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use.
We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices.
Our model enables reliable segmentation across a diverse set of fetal brain images.
arXiv Detail & Related papers (2024-04-10T16:04:21Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - FetusMapV2: Enhanced Fetal Pose Estimation in 3D Ultrasound [28.408626329596668]
We propose a novel 3D fetal pose estimation framework (called FetusMapV2) to overcome the above challenges.
First, we propose a scheme that explores the complementary network structure-unconstrained and activation-unreserved GPU memory management approaches.
Second, we design a novel Pair Loss to mitigate confusion caused by symmetrical and similar anatomical structures.
Third, we propose a shape priors-based self-supervised learning by selecting the relatively stable landmarks to refine the pose online.
arXiv Detail & Related papers (2023-10-30T06:18:47Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Towards Realistic Ultrasound Fetal Brain Imaging Synthesis [0.7315240103690552]
There are few public ultrasound fetal imaging datasets due to insufficient amounts of clinical data, patient privacy, rare occurrence of abnormalities in general practice, and limited experts for data collection and validation.
To address such data scarcity, we proposed generative adversarial networks (GAN)-based models, diffusion-super-resolution-GAN and transformer-based-GAN, to synthesise images of fetal ultrasound brain planes from one public dataset.
arXiv Detail & Related papers (2023-04-08T07:07:20Z) - Localizing Scan Targets from Human Pose for Autonomous Lung Ultrasound
Imaging [61.60067283680348]
With the advent of COVID-19 global pandemic, there is a need to fully automate ultrasound imaging.
We propose a vision-based, data driven method that incorporates learning-based computer vision techniques.
Our method attains an accuracy level of 15.52 (9.47) mm for probe positioning and 4.32 (3.69)deg for probe orientation, with a success rate above 80% under an error threshold of 25mm for all scan targets.
arXiv Detail & Related papers (2022-12-15T14:34:12Z) - COVID-Net US-X: Enhanced Deep Neural Network for Detection of COVID-19
Patient Cases from Convex Ultrasound Imaging Through Extended Linear-Convex
Ultrasound Augmentation Learning [75.74756992992147]
The global population continues to face significant negative impact by the on-going COVID-19 pandemic.
There has been an increasing usage of point-of-care ultrasound (POCUS) imaging as a low-cost effective imaging modality of choice.
A major challenge to building deep neural networks for COVID-19 screening using POCUS is the types of probes used.
arXiv Detail & Related papers (2022-04-29T02:13:39Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - AutoFB: Automating Fetal Biometry Estimation from Standard Ultrasound
Planes [10.745788530692305]
The proposed framework semantically segments the key fetal anatomies using state-of-the-art segmentation models.
We show that the network with the best segmentation performance tends to be more accurate for biometry estimation.
arXiv Detail & Related papers (2021-07-12T08:42:31Z) - FetusMap: Fetal Pose Estimation in 3D Ultrasound [42.59502360552173]
We propose to estimate the 3D pose of fetus in US volumes to facilitate its quantitative analyses.
This is the first work about 3D pose estimation of fetus in the literature.
We propose a self-supervised learning (SSL) framework to finetune the deep network to form visually plausible pose predictions.
arXiv Detail & Related papers (2019-10-11T01:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.