Measuring proximity to standard planes during fetal brain ultrasound scanning
- URL: http://arxiv.org/abs/2404.07124v1
- Date: Wed, 10 Apr 2024 16:04:21 GMT
- Title: Measuring proximity to standard planes during fetal brain ultrasound scanning
- Authors: Chiara Di Vece, Antonio Cirigliano, Meala Le Lous, Raffaele Napolitano, Anna L. David, Donald Peebles, Pierre Jannin, Francisco Vasconcelos, Danail Stoyanov,
- Abstract summary: This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use.
We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices.
Our model enables reliable segmentation across a diverse set of fetal brain images.
- Score: 8.328549443700858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices. Our model enables reliable segmentation across a diverse set of fetal brain images. Furthermore, the model incorporates a classification mechanism to identify the fetal brain precisely. Our model not only filters out frames lacking the brain but also generates masks for those containing it, enhancing the relevance of plane pose regression in clinical settings. We focus on fetal brain navigation from 2D ultrasound (US) video analysis and combine this model with a US plane pose regression network to provide sensorless proximity detection to SPs and non-SPs planes; we emphasize the importance of proximity detection to SPs for guiding sonographers, offering a substantial advantage over traditional methods by allowing earlier and more precise adjustments during scanning. We demonstrate the practical applicability of our approach through validation on real fetal scan videos obtained from sonographers of varying expertise levels. Our findings demonstrate the potential of our approach to complement existing fetal US technologies and advance prenatal diagnostic practices.
Related papers
- Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification [3.998431476275487]
We propose a lightweight artificial intelligence architecture to classify the largest benchmark ultrasound dataset.
The approach fine-tunes from lightweight EfficientNet feature extraction backbones pre-trained on the ImageNet1k.
Our methodology incorporates the attention mechanism to refine features and 3-layer perceptrons for classification, achieving superior performance with the highest Top-1 accuracy of 96.25%, Top-2 accuracy of 99.80% and F1-Score of 0.9576.
arXiv Detail & Related papers (2024-10-22T20:02:38Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Ultrasound Plane Pose Regression: Assessing Generalized Pose Coordinates
in the Fetal Brain [9.465965149145559]
We aim to build a US plane localization system for 3D visualization, training, and guidance without integrating additional sensors.
This work builds on our previous work, which predicts the six-dimensional (6D) pose of arbitrarily oriented US planes slicing the fetal brain.
We investigate the impact of registration quality in the training and testing data and its subsequent effect on trained models.
arXiv Detail & Related papers (2023-01-19T21:16:36Z) - Localizing Scan Targets from Human Pose for Autonomous Lung Ultrasound
Imaging [61.60067283680348]
With the advent of COVID-19 global pandemic, there is a need to fully automate ultrasound imaging.
We propose a vision-based, data driven method that incorporates learning-based computer vision techniques.
Our method attains an accuracy level of 15.52 (9.47) mm for probe positioning and 4.32 (3.69)deg for probe orientation, with a success rate above 80% under an error threshold of 25mm for all scan targets.
arXiv Detail & Related papers (2022-12-15T14:34:12Z) - Agent with Tangent-based Formulation and Anatomical Perception for
Standard Plane Localization in 3D Ultrasound [56.7645826576439]
We introduce a novel reinforcement learning framework for automatic SP localization in 3D US.
First, we formulate SP localization in 3D US as a tangent-point-based problem in RL to restructure the action space.
Second, we design an auxiliary task learning strategy to enhance the model's ability to recognize subtle differences crossing Non-SPs and SPs in plane search.
arXiv Detail & Related papers (2022-07-01T14:53:27Z) - Leveraging Clinically Relevant Biometric Constraints To Supervise A Deep
Learning Model For The Accurate Caliper Placement To Obtain Sonographic
Measurements Of The Fetal Brain [0.0]
We propose a deep learning (DL) approach to compute 3 key fetal brain biometry from the 2D USG images of the transcerebellar plane (TC)
We leveraged clinically relevant biometric constraints (relationship between caliper points) and domain-relevant data augmentation to improve the accuracy of a U-Net DL model.
For all cases, the mean errors in the placement of the individual caliper points and the computed biometry were comparable to error rates among clinicians.
arXiv Detail & Related papers (2022-03-28T04:00:22Z) - Towards A Device-Independent Deep Learning Approach for the Automated
Segmentation of Sonographic Fetal Brain Structures: A Multi-Center and
Multi-Device Validation [0.0]
We propose a DL based segmentation framework for the automated segmentation of 10 key fetal brain structures from 2 axial planes from fetal brain USG images (2D)
The proposed DL system offered a promising and generalizable performance (multi-centers, multi-device) and also presents evidence in support of device-induced variation in image quality.
arXiv Detail & Related papers (2022-02-28T05:42:03Z) - Statistical Dependency Guided Contrastive Learning for Multiple Labeling
in Prenatal Ultrasound [56.631021151764955]
Standard plane recognition plays an important role in prenatal ultrasound (US) screening.
We build a novel multi-label learning scheme to identify multiple standard planes and corresponding anatomical structures simultaneously.
arXiv Detail & Related papers (2021-08-11T06:39:26Z) - FetalNet: Multi-task deep learning framework for fetal ultrasound
biometric measurements [11.364211664829567]
We propose an end-to-end multi-task neural network called FetalNet with an attention mechanism and stacked module for fetal ultrasound scan video analysis.
The main goal in fetal ultrasound video analysis is to find proper standard planes to measure the fetal head, abdomen and femur.
Our method called FetalNet outperforms existing state-of-the-art methods in both classification and segmentation in fetal ultrasound video recordings.
arXiv Detail & Related papers (2021-07-14T19:13:33Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.