RoCNet: 3D Robust Registration of Point-Clouds using Deep Learning
- URL: http://arxiv.org/abs/2303.07963v2
- Date: Thu, 26 Oct 2023 08:55:20 GMT
- Title: RoCNet: 3D Robust Registration of Point-Clouds using Deep Learning
- Authors: Karim Slimani, Brahim Tamadazte, Catherine Achard
- Abstract summary: This paper introduces a new method for 3D point cloud registration based on deep learning.
We conduct experiments on the ModelNet40 dataset, and our proposed architecture shows very promising results.
- Score: 5.494111035517598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a new method for 3D point cloud registration based on
deep learning. The architecture is composed of three distinct blocs: (i) an
encoder composed of a convolutional graph-based descriptor that encodes the
immediate neighbourhood of each point and an attention mechanism that encodes
the variations of the surface normals. Such descriptors are refined by
highlighting attention between the points of the same set and then between the
points of the two sets. (ii) a matching process that estimates a matrix of
correspondences using the Sinkhorn algorithm. (iii) Finally, the rigid
transformation between the two point clouds is calculated by RANSAC using the
Kc best scores from the correspondence matrix. We conduct experiments on the
ModelNet40 dataset, and our proposed architecture shows very promising results,
outperforming state-of-the-art methods in most of the simulated configurations,
including partial overlap and data augmentation with Gaussian noise.
Related papers
- Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - Robust Point Cloud Registration Framework Based on Deep Graph
Matching(TPAMI Version) [13.286247750893681]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matching-based framework for point cloud registration.
arXiv Detail & Related papers (2022-11-09T06:05:25Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - GenReg: Deep Generative Method for Fast Point Cloud Registration [18.66568286698704]
We propose a new data-driven registration algorithm by investigating deep generative neural networks to point cloud registration.
The experiments on both ModelNet40 and 7Scene datasets demonstrate that the proposed algorithm achieves state-of-the-art accuracy and efficiency.
arXiv Detail & Related papers (2021-11-23T10:52:09Z) - DFC: Deep Feature Consistency for Robust Point Cloud Registration [0.4724825031148411]
We present a novel learning-based alignment network for complex alignment scenes.
We validate our approach on the 3DMatch dataset and the KITTI odometry dataset.
arXiv Detail & Related papers (2021-11-15T08:27:21Z) - PCAM: Product of Cross-Attention Matrices for Rigid Registration of
Point Clouds [79.99653758293277]
PCAM is a neural network whose key element is a pointwise product of cross-attention matrices.
We show that PCAM achieves state-of-the-art results among methods which, like us, solve steps (a) and (b) jointly via deepnets.
arXiv Detail & Related papers (2021-10-04T09:23:27Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
We present an efficient framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space.
Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset.
arXiv Detail & Related papers (2021-09-09T14:38:06Z) - The Devils in the Point Clouds: Studying the Robustness of Point Cloud
Convolutions [15.997907568429177]
This paper investigates different variants of PointConv, a convolution network on point clouds, to examine their robustness to input scale and rotation changes.
We derive a novel viewpoint-invariant descriptor by utilizing 3D geometric properties as the input to PointConv.
Experiments are conducted on the 2D MNIST & CIFAR-10 datasets as well as the 3D Semantic KITTI & ScanNet dataset.
arXiv Detail & Related papers (2021-01-19T19:32:38Z) - Learning multiview 3D point cloud registration [74.39499501822682]
We present a novel, end-to-end learnable, multiview 3D point cloud registration algorithm.
Our approach outperforms the state-of-the-art by a significant margin, while being end-to-end trainable and computationally less costly.
arXiv Detail & Related papers (2020-01-15T03:42:14Z) - Quaternion Equivariant Capsule Networks for 3D Point Clouds [58.566467950463306]
We present a 3D capsule module for processing point clouds that is equivariant to 3D rotations and translations.
We connect dynamic routing between capsules to the well-known Weiszfeld algorithm.
Based on our operator, we build a capsule network that disentangles geometry from pose.
arXiv Detail & Related papers (2019-12-27T13:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.