Hadronic vacuum polarization correction to the bound-electron $g$ factor
- URL: http://arxiv.org/abs/2303.07973v1
- Date: Tue, 14 Mar 2023 15:28:44 GMT
- Title: Hadronic vacuum polarization correction to the bound-electron $g$ factor
- Authors: Eugen Dizer and Zolt\'an Harman
- Abstract summary: The hadronic vacuum polarization correction to the $g$ factor of a bound electron is investigated theoretically.
In heavy ions, such effects are found to be much larger than for the free-electron $g$ factor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The hadronic vacuum polarization correction to the $g$ factor of a bound
electron is investigated theoretically. An effective hadronic Uehling potential
obtained from measured cross sections of $e^- e^+$ annihilation into hadrons is
employed to calculate $g$ factor corrections for low-lying hydrogenic levels.
Analytical Dirac-Coulomb wave functions, as well as bound wave functions
accounting for the finite nuclear radius are used. Closed formulas for the $g$
factor shift in case of a point-like nucleus are derived. In heavy ions, such
effects are found to be much larger than for the free-electron $g$ factor.
Related papers
- Vacuum polarization in molecules II: higher order corrections [0.1560553867698778]
A strategy for the efficient calculation of vacuum polarization potentials is outlined.
The order $alpha(Z alpha)$, $alpha (Z alpha)3$ and $alpha2(Zalpha)$ effects of a Gaussian nuclear charge on the electron-positron field are applied variationally.
arXiv Detail & Related papers (2024-05-18T11:23:24Z) - Hadronic vacuum polarization correction to atomic energy levels [0.0]
Shift of atomic energy levels due to hadronic vacuum polarization is evaluated in a semiempirical way for hydrogenlike ions and for muonic hydrogen.
A parametric hadronic polarization function obtained from experimental cross sections of $e-e+$ annihilation into hadrons is applied to derive an effective relativistic Uehling potential.
arXiv Detail & Related papers (2022-09-07T15:41:46Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - B-Spline basis Hartree-Fock method for arbitrary central potentials:
atoms, clusters and electron gas [0.0]
An implementation of the Hartree-Fock method capable of robust convergence for well-behaved arbitrary central potentials is presented.
For the Coulomb central potential, convergence patterns and energies are presented for a selection of atoms and negative ions.
For the harmonically confined electron-gas problem, comparisons are made with the Thomas-Fermi method and its accurate analytical solution.
arXiv Detail & Related papers (2021-08-12T16:57:21Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - Two-loop virtual light-by-light scattering corrections to the
bound-electron $g$ factor [0.0]
corrections to the $g$ factor of hydrogenlike ions are calculated without expansion in the nuclear binding field.
The total correction to the $g$ factor coming from all diagrams considered in this work is found to be highly relevant for upcoming experimental tests of fundamental physics with highly charged ions.
arXiv Detail & Related papers (2020-07-23T20:35:10Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.