Many-body theory for positronium scattering and pickoff annihilation in
noble-gas atoms
- URL: http://arxiv.org/abs/2105.06749v1
- Date: Fri, 14 May 2021 10:17:16 GMT
- Title: Many-body theory for positronium scattering and pickoff annihilation in
noble-gas atoms
- Authors: A. R. Swann, D. G. Green and G. F. Gribakin
- Abstract summary: Many-body-theory approach to positronium-atom interactions developed in [Phys. Rev. Lett. textbf120, 183402] is applied to the sequence of noble-gas atoms He-Xe.
The Dyson equation is solved separately for an electron and positron moving in the field of the atom, with the entire system enclosed in a hard-wall cavity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The many-body-theory approach to positronium-atom interactions developed in
[Phys. Rev. Lett. \textbf{120}, 183402 (2018)] is applied to the sequence of
noble-gas atoms He-Xe. The Dyson equation is solved separately for an electron
and positron moving in the field of the atom, with the entire system enclosed
in a hard-wall spherical cavity. The two-particle Dyson equation is solved to
give the energies and wave functions of the Ps eigenstates in the cavity. From
these, we determine the scattering phase shifts and cross sections, and values
of the pickoff annihilation parameter $^1Z_\text{eff}$ including short-range
electron-positron correlations via vertex enhancement factors. Comparisons are
made with available experimental data for elastic and momentum-transfer cross
sections and $^1Z_\text{eff}$. Values of $^1Z_\text{eff}$ for He and Ne,
previously reported in [Phys. Rev. Lett. \textbf{120}, 183402 (2018)], are
found to be in near-perfect agreement with experiment, and for Ar, Kr, and Xe
within a factor of 1.2.
Related papers
- Existence of quantum states for Klein-Gordon particles based on exact
and approximate scenarios with pseudo-dot spherical confinement [0.0]
It is shown how confluent hypergeometric functions have principal quantum numbers for considered spatial confinement.
The findings related to the relativistic eigenvalues of the Klein-Gordon particle moving spherical space show the dependence of mass distribution.
arXiv Detail & Related papers (2023-07-11T15:09:56Z) - Hadronic vacuum polarization correction to the bound-electron $g$ factor [0.0]
The hadronic vacuum polarization correction to the $g$ factor of a bound electron is investigated theoretically.
In heavy ions, such effects are found to be much larger than for the free-electron $g$ factor.
arXiv Detail & Related papers (2023-03-14T15:28:44Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - Universal energy-dependent pseudopotential for the two-body problem of
confined ultracold atoms [4.514953268743484]
Two-body scattering amplitude and energy spectrum of confined ultracold atoms are of fundamental importance for studies of ultracold atom physics.
For many systems, one can efficiently calculate these quantities via the zero-range Huang-Yang pseudopotential (HYP)
We show a method based on the quantum defect theory, with which $hat a_rm eff$ can be analytically derived for systems with van der Waals inter-atomic interaction.
arXiv Detail & Related papers (2021-08-02T16:34:04Z) - Ultracold spin-balanced fermionic quantum liquids with renormalized
$P$-wave interactions [0.0]
We consider a spin-balanced degenerate gas of spin-1/2 fermions governed by low-energy $P$-wave interactions.
The energy per particle $barcalE$ in the many-body system is calculated by resumming the ladder diagrams.
arXiv Detail & Related papers (2021-07-16T18:00:01Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Theoretical investigation of the Freeman resonance in the dissociative
ionization of $H_2+$ [0.0]
The dissociative ionization of $H+$ in linearly polarized, 400 nm laser pulses is simulated by solving a three-particle time-dependent Schr"odinger equation in full dimensionality.
The analysis of the wavefunction for electrons and protons after the pulse are presented, where we find $U_p$ is absorbed by the Freeman resonances between two excited ungerade states.
arXiv Detail & Related papers (2020-08-21T15:10:48Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.