論文の概要: Progress Note Understanding -- Assessment and Plan Reasoning: Overview
of the 2022 N2C2 Track 3 Shared Task
- arxiv url: http://arxiv.org/abs/2303.08038v1
- Date: Tue, 14 Mar 2023 16:17:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 14:17:29.829083
- Title: Progress Note Understanding -- Assessment and Plan Reasoning: Overview
of the 2022 N2C2 Track 3 Shared Task
- Title(参考訳): 進捗ノート理解-評価と計画推論--2022年N2C2トラック3共有タスクの概要
- Authors: Yanjun Gao, Dmitriy Dligach, Timothy Miller, Matthew M Churpek, Ozlem
Uzuner, Majid Afshar
- Abstract要約: 2022年全国NLP臨床チャレンジ(N2C2)トラック3:進歩ノート理解 - 評価と計画推論について紹介する。
本課題は, 評価部に含まれる患者の総合的状態と, 計画部の各構成成分との関係を, 自動的に因果関係を予測できるNLPシステムの開発と評価を行うことである。
2022 n2c2 Track 3の結果を提示し,データ,評価,参加,システム性能について述べる。
- 参考スコア(独自算出の注目度): 4.867840482657326
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Daily progress notes are common types in the electronic health record (EHR)
where healthcare providers document the patient's daily progress and treatment
plans. The EHR is designed to document all the care provided to patients, but
it also enables note bloat with extraneous information that distracts from the
diagnoses and treatment plans. Applications of natural language processing
(NLP) in the EHR is a growing field with the majority of methods in information
extraction. Few tasks use NLP methods for downstream diagnostic decision
support. We introduced the 2022 National NLP Clinical Challenge (N2C2) Track 3:
Progress Note Understanding - Assessment and Plan Reasoning as one step towards
a new suite of tasks. The Assessment and Plan Reasoning task focuses on the
most critical components of progress notes, Assessment and Plan subsections
where health problems and diagnoses are contained. The goal of the task was to
develop and evaluate NLP systems that automatically predict causal relations
between the overall status of the patient contained in the Assessment section
and its relation to each component of the Plan section which contains the
diagnoses and treatment plans. The goal of the task was to identify and
prioritize diagnoses as the first steps in diagnostic decision support to find
the most relevant information in long documents like daily progress notes. We
present the results of 2022 n2c2 Track 3 and provide a description of the data,
evaluation, participation and system performance.
- Abstract(参考訳): EHR(Electronic Health Record)では、医療提供者が患者の日々の進歩と治療計画を文書化している。
EHRは、患者に提供されたすべてのケアを文書化するように設計されていますが、診断や治療計画から逸脱する余計な情報で注意を喚起することができます。
EHRにおける自然言語処理 (NLP) の応用は、情報抽出における手法の多数と共に成長する分野である。
下流診断決定支援にNLPメソッドを使用するタスクはほとんどない。
2022 national nlp clinical challenge (n2c2) track 3: progress note understanding - assessment and plan reasoningを新しいタスクスイートへの一歩として紹介した。
アセスメントとプラン推論のタスクは、健康問題や診断を含む進歩ノート、アセスメントとプランのサブセクションの最も重要な要素に焦点を当てている。
本研究の目的は、評価部に含まれる患者の全体状態と、診断及び治療計画を含む計画部の各構成要素との因果関係を自動的に予測するnlpシステムを開発し、評価することであった。
このタスクの目的は、診断を診断決定支援の最初のステップとして特定し、優先順位付けし、日々の進歩ノートのような長い文書で最も関連性の高い情報を見つけることである。
2022 n2c2 Track 3の結果を提示し,データ,評価,参加,システム性能について述べる。
関連論文リスト
- Retrieve, Reason, and Refine: Generating Accurate and Faithful Patient
Instructions [65.11629300465812]
臨床作業量を削減しつつ,不完全性を回避する客観的な手段を提供する新しい課題を提案する。
Re3Writerは医師の作業パターンを模倣し、医師によって書かれた歴史的なPIから関連する作業経験を最初に取得する。
その後、回収された作業経験を洗練させ、医療知識を推論して有用な情報を抽出する。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Summarizing Patients Problems from Hospital Progress Notes Using
Pre-trained Sequence-to-Sequence Models [9.879960506853145]
問題リストの要約には、臨床文書を理解し、抽象化し、生成するモデルが必要である。
当科では,入院時に提供者の進捗記録からの入力を用いて,患者の日常診療計画における問題点のリストを作成することを目的とした,新たなNLPタスクを提案する。
論文 参考訳(メタデータ) (2022-08-17T17:07:35Z) - A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks
and Datasets [70.32630628211803]
本稿では,医師と患者との対話理解とタスク指向インタラクションという,医療相談の自動化を支援する2つの枠組みを提案する。
マルチレベルな微粒なアノテーションを付加した新しい大規模医療対話データセットが導入された。
本稿では,各タスクに対するベンチマーク結果のセットを報告し,データセットのユーザビリティを示し,今後の研究のベースラインを設定する。
論文 参考訳(メタデータ) (2022-04-19T16:43:21Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - A Scoping Review of Publicly Available Language Tasks in Clinical
Natural Language Processing [7.966218734325912]
バイオメディカルリサーチとコンピュータサイエンス文献データベースを含む6つのデータベースを検索した。
47のNLPタスクを有する35の論文が2007年から2021年の間に包括的基準を満たした。
論文 参考訳(メタデータ) (2021-12-07T22:49:58Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - A Methodology for Bi-Directional Knowledge-Based Assessment of
Compliance to Continuous Application of Clinical Guidelines [1.52292571922932]
ケアプロセスのガイドラインに基づく品質評価を自動化するための新しいアプローチを提案する。
BiKBAC法は臨床ガイドラインを適用する際のコンプライアンスの度合いを評価する。
DiscovErrシステムは、2型糖尿病管理領域の別の研究で評価されました。
論文 参考訳(メタデータ) (2021-03-13T20:43:45Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Towards an Automated SOAP Note: Classifying Utterances from Medical
Conversations [0.6875312133832078]
我々は、(i)SOAPセクションと(ii)話者の役割に従って、医療会話から発話を分類するためのギャップを橋渡しします。
本稿では,既存のディープラーニングアーキテクチャを上記の2つのタスクに適応させるシステム分析を提案する。
その結果,単語レベルと発話レベルの両方をキャプチャする階層的な文脈をモデル化することで,両者の分類作業を大幅に改善することが示唆された。
論文 参考訳(メタデータ) (2020-07-17T04:19:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。