論文の概要: Statistical Hardware Design With Multi-model Active Learning
- arxiv url: http://arxiv.org/abs/2303.08054v1
- Date: Tue, 14 Mar 2023 16:37:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 14:07:54.629322
- Title: Statistical Hardware Design With Multi-model Active Learning
- Title(参考訳): マルチモデルアクティブラーニングによる統計ハードウェア設計
- Authors: Alireza Ghaffari, Masoud Asgharian, Yvon Savaria
- Abstract要約: 本稿では,効率的なハードウェア設計の課題を解決するために,モデルに基づく能動的学習手法を提案する。
提案手法は,設計空間探索と性能予測を同時に行うのに十分な精度のハードウェアモデルを提供する。
- 参考スコア(独自算出の注目度): 1.7596501992526474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rising complexity of numerous novel applications that serve our
modern society comes the strong need to design efficient computing platforms.
Designing efficient hardware is, however, a complex multi-objective problem
that deals with multiple parameters and their interactions. Given that there
are a large number of parameters and objectives involved in hardware design,
synthesizing all possible combinations is not a feasible method to find the
optimal solution. One promising approach to tackle this problem is statistical
modeling of a desired hardware performance. Here, we propose a model-based
active learning approach to solve this problem. Our proposed method uses
Bayesian models to characterize various aspects of hardware performance. We
also use transfer learning and Gaussian regression bootstrapping techniques in
conjunction with active learning to create more accurate models. Our proposed
statistical modeling method provides hardware models that are sufficiently
accurate to perform design space exploration as well as performance prediction
simultaneously. We use our proposed method to perform design space exploration
and performance prediction for various hardware setups, such as
micro-architecture design and OpenCL kernels for FPGA targets. Our experiments
show that the number of samples required to create performance models
significantly reduces while maintaining the predictive power of our proposed
statistical models. For instance, in our performance prediction setting, the
proposed method needs 65\% fewer samples to create the model, and in the design
space exploration setting, our proposed method can find the best parameter
settings by exploring less than 50 samples.
- Abstract(参考訳): 現代の社会に貢献する多くの新しいアプリケーションが複雑化するにつれ、効率的なコンピューティングプラットフォームを設計する必要がある。
しかし、効率的なハードウェアの設計は、複数のパラメータとその相互作用を扱う複雑な多目的問題である。
ハードウェア設計には多数のパラメータや目的があるので、可能な組み合わせをすべて合成することは、最適解を見つけるための実現可能な方法ではない。
この問題に取り組むための有望なアプローチは、望ましいハードウェア性能の統計的モデリングである。
本稿では,この問題を解決するためのモデルベースアクティブラーニング手法を提案する。
提案手法はベイズモデルを用いてハードウェア性能の様々な側面を特徴付ける。
また、より正確なモデルを作成するために、トランスファー学習とガウス回帰ブートストラップ技術とアクティブラーニングを併用しています。
提案手法は,設計空間探索と性能予測を同時に行うのに十分な精度のハードウェアモデルを提供する。
提案手法は,FPGAターゲット用マイクロアーキテクチャ設計やOpenCLカーネルなど,様々なハードウェア構成のための設計空間探索と性能予測を行う。
実験により,提案する統計モデルの予測力を維持しつつ,性能モデル作成に必要なサンプル数が大幅に減少することを示した。
例えば、性能予測設定では、提案手法はモデルを作成するのに65\%のサンプルが必要であり、設計空間探索設定では、提案手法は50以下のサンプルを探索することで最適なパラメータ設定を見つけることができる。
関連論文リスト
- HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV [4.370097023410272]
本稿では,統合学習と呼ばれるチューニング問題の新たな定式化を提案する。
このような設定では、単一のタスクをチューニングするよりも、全体の最適化時間に関心があります。
我々は,XGBoostアルゴリズムの実証研究とMIMIC-IV医療データベースから抽出した予測タスクの収集を通じて,このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-01-27T21:38:53Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Data Summarization via Bilevel Optimization [48.89977988203108]
シンプルだが強力なアプローチは、小さなサブセットのデータを操作することだ。
本研究では,コアセット選択を基数制約付き双レベル最適化問題として定式化する汎用コアセットフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-26T09:08:38Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Low-Precision Hardware Architectures Meet Recommendation Model Inference
at Scale [11.121380180647769]
本稿では,低精度ハードウェアに参照レコメンデーションモデルを適用するための検索戦略について紹介する。
また,ツールチェーンの設計と開発について論じ,モデルの精度を生涯にわたって維持する。
これらの教訓は,ハードウェアアーキテクチャとソフトウェアエンジニアリングの協調設計を促進するものだ,と私たちは信じています。
論文 参考訳(メタデータ) (2021-05-26T16:42:33Z) - Balancing Accuracy and Latency in Multipath Neural Networks [0.09668407688201358]
我々は,一発のニューラルネットワーク探索モデルを用いて,難解な数のニューラルネットワークの性能を暗黙的に評価する。
本手法は,待ち時間が異なるモデル間の相対性能を正確にモデル化し,異なるデータセットをまたいだ精度で未検出モデルの性能を予測できることを示す。
論文 参考訳(メタデータ) (2021-04-25T00:05:48Z) - Multi-Objective Evolutionary Design of CompositeData-Driven Models [0.0]
この手法はGPComp@Freeと呼ばれるモデル設計のためのパラメータフリーな遺伝的アルゴリズムに基づいている。
実験結果から, モデル設計に対する多目的アプローチにより, 得られたモデルの多様性と品質が向上することが確認された。
論文 参考訳(メタデータ) (2021-03-01T20:45:24Z) - Cost-Effective Federated Learning Design [37.16466118235272]
フェデレーション学習(federated learning, fl)は、多数のデバイスが生のデータを共有することなく、協調的にモデルを学習できる分散学習パラダイムである。
その効率性と有効性にもかかわらず、反復的なオンデバイス学習プロセスは、学習時間とエネルギー消費の面でかなりのコストを伴います。
本稿では,本質的制御変数を最適に選択する適応型flの設計法を分析し,総コストを最小化し,収束性を確保した。
論文 参考訳(メタデータ) (2020-12-15T14:45:11Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。