論文の概要: Homeomorphic Image Registration via Conformal-Invariant Hyperelastic
Regularisation
- arxiv url: http://arxiv.org/abs/2303.08113v1
- Date: Tue, 14 Mar 2023 17:47:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 13:48:59.464479
- Title: Homeomorphic Image Registration via Conformal-Invariant Hyperelastic
Regularisation
- Title(参考訳): 等角不変超弾性規則化によるホロモルフィック画像の登録
- Authors: Jing Zou, No\'emie Debroux, Lihao Liu, Jing Qin, Carola-Bibiane
Sch\"onlieb, and Angelica I Aviles-Rivero
- Abstract要約: 共形不変性に基づく変形可能な画像登録のための新しいフレームワークを提案する。
我々の正規化器は、変形場が滑らかで、可逆で、配向保存されるように強制する。
我々は,数値的および視覚的な実験を通じて,我々のフレームワークが現在の画像登録技術より優れていることを実証した。
- 参考スコア(独自算出の注目度): 9.53064372566798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deformable image registration is a fundamental task in medical image analysis
and plays a crucial role in a wide range of clinical applications. Recently,
deep learning-based approaches have been widely studied for deformable medical
image registration and achieved promising results. However, existing deep
learning image registration techniques do not theoretically guarantee
topology-preserving transformations. This is a key property to preserve
anatomical structures and achieve plausible transformations that can be used in
real clinical settings. We propose a novel framework for deformable image
registration. Firstly, we introduce a novel regulariser based on
conformal-invariant properties in a nonlinear elasticity setting. Our
regulariser enforces the deformation field to be smooth, invertible and
orientation-preserving. More importantly, we strictly guarantee topology
preservation yielding to a clinical meaningful registration. Secondly, we boost
the performance of our regulariser through coordinate MLPs, where one can view
the to-be-registered images as continuously differentiable entities. We
demonstrate, through numerical and visual experiments, that our framework is
able to outperform current techniques for image registration.
- Abstract(参考訳): 変形可能な画像登録は、医療画像解析の基本的な課題であり、幅広い臨床応用において重要な役割を果たす。
近年,変形可能な医用画像登録のための深層学習アプローチが広く研究され,有望な成果を上げている。
しかし、既存のディープラーニング画像登録技術は、トポロジー保存変換を理論的に保証していない。
これは解剖学的構造を保存し、実際の臨床で使用できる、妥当な変換を達成するための重要な特性である。
変形可能な画像登録のための新しいフレームワークを提案する。
まず, 非線形弾性設定において, 共形不変性に基づく新しい正則性を導入する。
我々の正規化器は変形場を滑らかで、可逆的で、配向保存するために強制する。
さらに,臨床的に有意な登録を得られるトポロジー保存を厳格に保証する。
第2に,登録済み画像を連続的に識別可能なエンティティとして見ることのできる座標MLPを用いて,正規化器の性能を向上する。
我々は,数値的および視覚的な実験により,現在の画像登録手法を上回ることができることを示す。
関連論文リスト
- Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
我々はHybridRetinaと呼ばれるハイブリッド登録フレームワークを提案する。
キーポイント検出器とGAMorphと呼ばれる変形ネットワークを用いて、大域的な変換と局所的な変形可能な変換を推定する。
FIREとFLoRI21という2つの広く使われているデータセットの実験により、提案したHybridRetinaは最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-09-02T08:43:50Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
本稿では,マルチモーダル群画像登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から4つの異なるデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
多くの深層学習に基づく登録法は、変形場は画像領域の至る所で滑らかで連続的であると仮定する。
本研究では,この課題に対処するために,不連続かつ局所的に滑らかな変形場を確保するための新しい不連続保存画像登録手法を提案する。
入力画像の構造的相関を学習するために,ネットワークのセグメンテーション成分にコアテンションブロックを提案する。
大規模心磁気共鳴画像系列を用いた物体内時間画像登録の課題について検討した。
論文 参考訳(メタデータ) (2022-11-24T23:45:01Z) - A Transformer-based Network for Deformable Medical Image Registration [5.388525884890891]
変形可能な医用画像登録は臨床診断と治療において重要な役割を担っている。
深層学習(DL)に基づく画像登録法が広く研究され,計算速度に優れた性能を示した。
本稿では,トランスを用いた画像登録手法を提案する。
論文 参考訳(メタデータ) (2022-02-24T13:45:45Z) - Self-Supervised Domain Adaptation for Diabetic Retinopathy Grading using
Vessel Image Reconstruction [61.58601145792065]
我々は網膜血管画像再構成に基づく新しい自己教師型タスクを定義することで、不変なターゲットドメインの特徴を学習する。
私たちのアプローチは既存のドメイン戦略よりも優れています。
論文 参考訳(メタデータ) (2021-07-20T09:44:07Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
ほとんどの深層学習に基づく登録法は、所望の変形場が全世界的に滑らかで連続的であると仮定する。
本稿では、より優れた登録性能とリアルな変形場を得るために、弱い教師付き深部不連続保存画像登録ネットワーク(DDIR)を提案する。
本研究では, 心臓磁気共鳴(MR)画像の登録実験において, 登録精度を大幅に向上し, より現実的な変形を予測できることを実証した。
論文 参考訳(メタデータ) (2021-07-09T13:35:59Z) - CycleMorph: Cycle Consistent Unsupervised Deformable Image Registration [34.546992605648086]
サイクル整合性は、変形中のトポロジを保存するために暗黙の正規化を提供することで、画像登録性能を向上させる。
医学的・非医学的な応用から得られた様々なデータセットに対する実験結果から,提案手法は,数秒以内に多様な画像対を効果的かつ正確に登録できることを示した。
論文 参考訳(メタデータ) (2020-08-13T09:30:12Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
本稿では, 自動文脈戦略を用いて変形場を段階的に洗練する幼児向け深層登録ネットワークを提案する。
本手法は, 繰り返し変形改善のために1つのネットワークを複数回呼び出すことにより, 変形場を推定する。
現状登録法との比較実験の結果, 変形場の滑らかさを保ちながら, 高い精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-05-19T06:00:13Z) - Learning Deformable Registration of Medical Images with Anatomical
Constraints [4.397224870979238]
医用画像解析の分野では、変形可能な画像登録が根本的な問題である。
我々は,画像解剖学のグローバルな非線形表現をセグメンテーションマスクを用いて学習し,それらを用いて登録プロセスの制約を行う。
実験により,提案した解剖学的制約付き登録モデルにより,最先端の手法よりも現実的で正確な結果が得られることが示された。
論文 参考訳(メタデータ) (2020-01-20T17:44:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。