Entangled Collective Spin States of Two Species Ultracold atoms in a
Ring
- URL: http://arxiv.org/abs/2303.08353v1
- Date: Wed, 15 Mar 2023 04:11:59 GMT
- Title: Entangled Collective Spin States of Two Species Ultracold atoms in a
Ring
- Authors: Tom\'a\v{s} Opatrn\'y and Kunal K. Das
- Abstract summary: We study the general quantum Hamiltonian that can be realized with two species of degenerate ultracold atoms in a ring-shaped trap.
We examine the spectrum and the states with a collective spin picture in a Dicke state basis.
The density of states for the full Hamiltonian shows features as of phase transition in varying between linear and quadratic limits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the general quantum Hamiltonian that can be realized with two
species of mutually interacting degenerate ultracold atoms in a ring-shaped
trap, with the options of rotation and an azimuthal lattice. We examine the
spectrum and the states with a collective spin picture in a Dicke state basis.
The system can generate states with a high degree of entanglement gauged by the
von Neumann entropy. The Hamiltonian has two components, a linear part that can
be controlled and switched on via rotation or the azimuthal lattice, and an
interaction-dependent quadratic part. Exact solutions are found for the
quadratic part for equal strengths of intra-species and the inter-species
interactions, but for generally different particle numbers in the two species.
The quadratic Hamiltonian has a degenerate ground state when the two species
have unequal number of particles, but non-degenerate when equal. We determine
the impact on the entanglement entropy of deviations from equal particle
numbers as well as deviations from the assumption of equal interaction
strengths. Limiting cases are shown to display features of a beam-splitter and
spin-squeezing that can find utility in interferometry. The density of states
for the full Hamiltonian shows features as of phase transition in varying
between linear and quadratic limits.
Related papers
- On the Bisognano-Wichmann entanglement Hamiltonian of nonrelativistic fermions [0.0]
We study the ground-state entanglement Hamiltonian of free nonrelativistic fermions for semi-infinite domains in one dimension.
We prove that the Bisognano-Wichmann form of the entanglement Hamiltonian becomes exact.
arXiv Detail & Related papers (2024-10-21T18:55:23Z) - Spin Orbit and Hyperfine Simulations with Two-Species Ultracold Atoms in a Ring [0.0]
A collective spin model is used to describe two species of mutually interacting ultracold bosonic atoms confined to a toroidal trap.
We show the linear component is an analog of a Zeeman Hamiltonian, and the quadratic component presents a macroscopic simulator for spin-orbit and hyperfine interactions.
arXiv Detail & Related papers (2024-06-04T09:17:43Z) - Dissipation-induced bound states as a two-level system [0.0]
An anti-parity-time symmetric system can have a single pair of real energy levels, while all the remaining levels are unstable due to the negative imaginary part of the energy.
In this work, we investigate the formation of bound states in a tight-binding chain induced by a harmonic imaginary potential.
arXiv Detail & Related papers (2024-05-28T03:25:31Z) - Gauge potentials and vortices in the Fock space of a pair of periodically driven Bose-Einstein condensates [0.0]
We study the coupled dynamics of two species of Bose-Einstein condensates (BECs) in a double well potential.
The ground state of the Floquet operator undergoes a transition from a Gaussian state to a quantized vortex state in Fock space.
arXiv Detail & Related papers (2024-03-31T02:24:05Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Spectral form factor in a minimal bosonic model of many-body quantum
chaos [1.3793594968500609]
We study spectral form factor in periodically-kicked bosonic chains.
We numerically find a nontrivial systematic system-size dependence of the Thouless time.
arXiv Detail & Related papers (2022-03-10T15:56:24Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.