Dissipation-induced bound states as a two-level system
- URL: http://arxiv.org/abs/2405.17781v1
- Date: Tue, 28 May 2024 03:25:31 GMT
- Title: Dissipation-induced bound states as a two-level system
- Authors: Hong Peng Zhang, Zhi Song,
- Abstract summary: An anti-parity-time symmetric system can have a single pair of real energy levels, while all the remaining levels are unstable due to the negative imaginary part of the energy.
In this work, we investigate the formation of bound states in a tight-binding chain induced by a harmonic imaginary potential.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Potential wells are employed to constrain quantum particles into forming discrete energy levels, acting as artificial few-level systems. In contrast, an anti-parity-time ($\mathcal{PT}$) symmetric system can have a single pair of real energy levels, while all the remaining levels are unstable due to the negative imaginary part of the energy. In this work, we investigate the formation of bound states in a tight-binding chain induced by a harmonic imaginary potential. Exact solutions show that the real parts of energy levels are equidistant, while the imaginary parts are semi-negative definite and equidistant. This allows for the formation of an effective two-level system. For a given initial state with a wide range of profiles, the evolved state always converges to a superposition of two stable eigenstates. In addition, these two states are orthogonal under the Dirac inner product and can be mutually switched by applying a $\pi$ pulse of a linear field. Our finding provides an alternative method for fabricating quantum devices through dissipation.
Related papers
- Ground state of the gauge invariant Dicke model: condensation of the photons in non-classical states [0.0]
Two-level systems that arise as a result of truncating the full Hilbert space of atoms to two levels are described by the gauge-invariant Dicke model.
We analyze the observable characteristics of both systems in a wide range of variation of their parameters.
arXiv Detail & Related papers (2024-09-04T13:38:12Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Identical damped harmonic oscillators described by coherent states [0.0]
We take a single coherent state and compute the relative entropy of coherence, $C_r$, in the energy, position and momentum bases.
Coherence is computed for a superposition of two coherent states, a cat state, and also a superposition of two cat states in the energy basis as a function of separation.
Considering a system of two non-interacting DHOs, the effect of quantum statistics is studied on the coherence of reduced single-particle states.
arXiv Detail & Related papers (2022-09-02T09:48:36Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Energy cat states induced by a parity-breaking excited-state quantum
phase transition [0.0]
We show that excited-state quantum phase transitions (ESQPTs) in a system in which the parity symmetry is broken can be used to engineer an energy-cat state.
arXiv Detail & Related papers (2022-01-11T14:38:57Z) - The bound-state solutions of the one-dimensional pseudoharmonic
oscillator [0.0]
We study the bound states of a quantum mechanical system governed by a constant $alpha$.
For attractive potentials within the range $-1/4leqalpha0$, there is an even-parity ground state with increasingly negative energy.
We show how the regularized excited states approach their unregularized counterparts.
arXiv Detail & Related papers (2021-11-24T23:03:10Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Localization Dynamics from Static and Mobile Impurities [3.803244458097104]
We study the superfluid response and localization dynamics from static and mobile impurities.
The superfluidity is formed in the rung-Mott phase of a bosonic ladder model.
We study the superfluid currents both in the weakly-coupled and strongly-coupled rungs limits for the bosons.
arXiv Detail & Related papers (2021-01-16T10:10:06Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.