論文の概要: Forecasting Intraday Power Output by a Set of PV Systems using Recurrent
Neural Networks and Physical Covariates
- arxiv url: http://arxiv.org/abs/2303.08459v2
- Date: Tue, 12 Dec 2023 16:31:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 20:42:15.916121
- Title: Forecasting Intraday Power Output by a Set of PV Systems using Recurrent
Neural Networks and Physical Covariates
- Title(参考訳): リカレントニューラルネットワークと物理共変量を用いた一組のPVシステムによる日内電力出力予測
- Authors: Pierrick Bruneau, David Fiorelli, Christian Braun, Daniel Koster
- Abstract要約: PhotoVoltaic(PV)システムによる出力の正確な予測は、エネルギー分配グリッドの動作を改善するために重要である。
このような日内予測を実現することを目的とした神経自己回帰モデルについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate intraday forecasts of the power output by PhotoVoltaic (PV) systems
are critical to improve the operation of energy distribution grids. We describe
a neural autoregressive model which aims at performing such intraday forecasts.
We build upon a physical, deterministic PV performance model, the output of
which being used as covariates in the context of the neural model. In addition,
our application data relates to a geographically distributed set of PV systems.
We address all PV sites with a single neural model, which embeds the
information about the PV site in specific covariates. We use a scale-free
approach which does rely on explicit modelling of seasonal effects. Our
proposal repurposes a model initially used in the retail sector, and discloses
a novel truncated Gaussian output distribution. An ablation study and a
comparison to alternative architectures from the literature shows that the
components in the best performing proposed model variant work synergistically
to reach a skill score of 15.72% with respect to the physical model, used as a
baseline.
- Abstract(参考訳): PhotoVoltaic (PV) システムによって出力される電力の正確な日内予測は、エネルギー分配グリッドの動作を改善するために重要である。
本稿では,このような日内予測を行う神経自己回帰モデルについて述べる。
我々は、物理的で決定論的なpvパフォーマンスモデルを構築し、その出力はニューラルネットワークのコンテキストで共変量として使用される。
さらに、アプリケーションデータは、地理的に分散したPVシステムの集合に関連している。
すべてのPVサイトを単一のニューラルモデルで処理し、PVサイトに関する情報を特定の共変量に埋め込む。
季節効果の明示的なモデリングに依存するスケールフリーなアプローチを用いる。
本提案は,当初小売部門で使用されていたモデルを再利用し,新たなガウス出力分布を開示する。
論文からのアブレーション研究と代替アーキテクチャとの比較により、最高の性能のモデル変種作業のコンポーネントは、ベースラインとして使用される物理モデルに関して15.72%のスキルスコアに達するために相乗的に機能することが示されている。
関連論文リスト
- Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
本稿では,RLによる報酬モデルの最適化により,最先端拡散モデルを微調整するハイブリッド手法を提案する。
我々は、報酬モデルの補間能力を活用し、オフラインデータにおいて最良の設計を上回るアプローチの能力を実証する。
論文 参考訳(メタデータ) (2024-05-30T03:57:29Z) - A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
反応流モデルにおける不確実性を捉えるためにベイズニューラルネットワークを用いる。
我々は、BNNモデルが、データ駆動クロージャモデルの不確実性の構造に関するユニークな洞察を提供することができることを示した。
このモデルの有効性は,様々な火炎条件と燃料からなるデータセットに対する事前評価によって実証される。
論文 参考訳(メタデータ) (2024-02-28T22:19:55Z) - MATNet: Multi-Level Fusion Transformer-Based Model for Day-Ahead PV
Generation Forecasting [0.47518865271427785]
MATNetはPV発電予測のための新しい自己アテンショントランスフォーマーベースのアーキテクチャである。
これは、AIパラダイムとPV発電に関する以前の物理的知識を組み合わせたハイブリッドアプローチで構成されている。
その結果,提案アーキテクチャは現在の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2023-06-17T14:03:09Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - An Adaptive Deep Learning Framework for Day-ahead Forecasting of
Photovoltaic Power Generation [0.8702432681310401]
本稿では,従来のデータから一般知識を取得するだけでなく,新たなデータから特定の知識を動的に学習するDLフレームワークである適応LSTM(AD-LSTM)モデルを提案する。
開発したAD-LSTMモデルは,特にコンセプトドリフトの存在下で,オフラインのLSTMモデルよりも高い予測能力を示す。
論文 参考訳(メタデータ) (2021-09-28T02:39:56Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z) - Forecasting Photovoltaic Power Production using a Deep Learning Sequence
to Sequence Model with Attention [0.0]
本稿では,PV発電のエンド・ツー・エンド予測のための教師付きディープラーニングモデルを提案する。
提案モデルは2つの基本概念に基づいており、他のシーケンス関連分野の大幅な性能向上につながった。
その結果、新しい設計は、PV電力予測技術の現在の状態以上で実行可能であることがわかった。
論文 参考訳(メタデータ) (2020-08-06T17:20:08Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z) - Energy Predictive Models for Convolutional Neural Networks on Mobile
Platforms [0.0]
モバイルデバイスにディープラーニングモデルをデプロイする場合、エネルギー利用は重要な懸念事項である。
我々はJetson TX1とSnapdragon 820上に12の代表的なConvolutional NeuralNetworks(ConvNets)を用いて、完全な接続層とプール層のための層型予測モデルを構築した。
ハードウェアとソフトウェアの組み合わせによるテストConvNetの全体的なエネルギー予測において,精度は76%から85%,モデル複雑度は1。
論文 参考訳(メタデータ) (2020-04-10T17:35:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。