論文の概要: Bayesian Learning for the Robust Verification of Autonomous Robots
- arxiv url: http://arxiv.org/abs/2303.08476v1
- Date: Wed, 15 Mar 2023 09:29:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 14:20:01.831770
- Title: Bayesian Learning for the Robust Verification of Autonomous Robots
- Title(参考訳): 自律ロボットのロバスト検証のためのベイズ学習
- Authors: Xingyu Zhao, Simos Gerasimou, Radu Calinescu, Calum Imrie, Valentin
Robu, David Flynn
- Abstract要約: 本フレームワークは,確認済みのロボットシステムの事前の知識と観察を利用して,事象の発生率の予測値範囲を学習する。
提案手法を水中インフラ検査・修理のための自律型ロボットミッションの検証事例に適用する。
- 参考スコア(独自算出の注目度): 13.000098499868658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a novel Bayesian learning framework that enables the runtime
verification of autonomous robots performing critical missions in uncertain
environments. Our framework exploits prior knowledge and observations of the
verified robotic system to learn expected ranges of values for the occurrence
rates of its events. We support both events observed regularly during system
operation, and singular events such as catastrophic failures or the completion
of difficult one-off tasks. Furthermore, we use the learnt event-rate ranges to
assemble interval continuous-time Markov models, and we apply quantitative
verification to these models to compute expected intervals of variation for key
system properties. These intervals reflect the uncertainty intrinsic to many
real-world systems, enabling the robust verification of their quantitative
properties under parametric uncertainty. We apply the proposed framework to the
case study of verification of an autonomous robotic mission for underwater
infrastructure inspection and repair.
- Abstract(参考訳): 我々は,不確実な環境で重要な任務を遂行する自律ロボットの実行時検証を可能にする,新しいベイズ学習フレームワークを開発した。
本フレームワークは,検証されたロボットシステムの事前知識と観察を活用し,事象発生率の予測値の範囲を学習する。
システム運用中に定期的に観測されるイベントと、破滅的な障害や困難なワンオフタスクの完了といった特異なイベントの両方をサポートします。
さらに、学習したイベントレート範囲を用いて連続時間マルコフモデルをアレンジし、これらのモデルに定量的な検証を適用し、キーシステム特性の変動の予測間隔を計算する。
これらの間隔は多くの実世界の系に内在する不確実性を反映しており、パラメトリック不確実性の下での量的性質の堅牢な検証を可能にする。
提案手法を,水中インフラ検査・補修のための自律型ロボットミッションの検証事例に適用する。
関連論文リスト
- Foundation Models for Autonomous Robots in Unstructured Environments [15.517532442044962]
この研究は、ロボットと非構造環境の2つの分野における基礎モデルの応用を体系的にレビューした。
LLMの言語能力は、人間とロボットの相互作用の知覚を改善するために、他の特徴よりも利用されてきた。
LLMの使用は、プロジェクトの管理と建設における安全性、災害管理における自然災害検出により多くの応用を実証した。
論文 参考訳(メタデータ) (2024-07-19T13:26:52Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Model-Based Runtime Monitoring with Interactive Imitation Learning [30.70994322652745]
本研究は,タスク実行中のエラーを監視し,検出する能力を備えたロボットの実現を目的とする。
本稿では,デプロイメントデータからシステム異常を検出し,障害を予測するためのモデルベースランタイム監視アルゴリズムを提案する。
本手法は, シミュレーションおよび物理ハードウェアにおいて, 23%, 40%高い成功率で, システムレベルおよび単体テストの基準線を上回り, 性能を向上する。
論文 参考訳(メタデータ) (2023-10-26T16:45:44Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Injecting Planning-Awareness into Prediction and Detection Evaluation [42.228191984697006]
私たちは一歩後退して、現在の評価指標を批判的に評価し、タスク対応メトリクスを、デプロイされるシステムのパフォーマンスのより良い測定基準として提案します。
実世界の自律運転データとともに、実世界のシミュレーション実験により、提案したタスク認識メトリクスが結果非対称性を考慮でき、モデルのクローズドループ性能をよりよく推定できることを確認した。
論文 参考訳(メタデータ) (2021-10-07T08:52:48Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Symbiotic System Design for Safe and Resilient Autonomous Robotics in
Offshore Wind Farms [3.5409202655473724]
Beyond Visual Line of Sight(BVLOS)ロボティクスの障壁には、運用上の安全コンプライアンスとレジリエンスが含まれます。
ロボットプラットフォームと遠隔操作者の相互利益のための知識共有によるライフサイクル学習と共進化を反映した共生システムを提案する。
本手法は,自律ミッションにおける安全性,信頼性,レジリエンスのリアルタイム検証を可能にする。
論文 参考訳(メタデータ) (2021-01-23T11:58:16Z) - From Simulation to Real World Maneuver Execution using Deep
Reinforcement Learning [69.23334811890919]
深層強化学習(Deep Reinforcement Learning)は、さまざまな分野における多くの制御タスクを解決できることが証明されている。
これは主に、シミュレーションデータと実世界のデータ間のドメイン適応の欠如と、トレインデータセットとテストデータセットの区別の欠如による。
本稿では,エージェントが同時に訓練される複数の環境に基づくシステムを提案する。
論文 参考訳(メタデータ) (2020-05-13T14:22:20Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。