論文の概要: SpiderMesh: Spatial-aware Demand-guided Recursive Meshing for RGB-T
Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2303.08692v2
- Date: Wed, 27 Sep 2023 10:03:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 19:41:16.733943
- Title: SpiderMesh: Spatial-aware Demand-guided Recursive Meshing for RGB-T
Semantic Segmentation
- Title(参考訳): SpiderMesh: RGB-Tセマンティックセグメンテーションのための空間対応需要誘導型再帰型メッシュ
- Authors: Siqi Fan, Zhe Wang, Yan Wang, Jingjing Liu
- Abstract要約: 本稿では,実用的なRGB-Tセグメンテーションのための空間対応需要誘導型再帰メッシュ(SpiderMesh)フレームワークを提案する。
SpiderMeshは、光学障害領域におけるコンテキストセマンティクスの不十分さを積極的に補償する。
MFNetとPST900データセットの実験は、SpiderMeshが標準的なRGB-Tセグメンテーションベンチマークで最先端のパフォーマンスを達成することを示した。
- 参考スコア(独自算出の注目度): 13.125707028339292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For semantic segmentation in urban scene understanding, RGB cameras alone
often fail to capture a clear holistic topology in challenging lighting
conditions. Thermal signal is an informative additional channel that can bring
to light the contour and fine-grained texture of blurred regions in low-quality
RGB image. Aiming at practical RGB-T (thermal) segmentation, we systematically
propose a Spatial-aware Demand-guided Recursive Meshing (SpiderMesh) framework
that: 1) proactively compensates inadequate contextual semantics in
optically-impaired regions via a demand-guided target masking algorithm; 2)
refines multimodal semantic features with recursive meshing to improve
pixel-level semantic analysis performance. We further introduce an asymmetric
data augmentation technique M-CutOut, and enable semi-supervised learning to
fully utilize RGB-T labels only sparsely available in practical use. Extensive
experiments on MFNet and PST900 datasets demonstrate that SpiderMesh achieves
state-of-the-art performance on standard RGB-T segmentation benchmarks.
- Abstract(参考訳): 都市景観理解におけるセマンティックセグメンテーションでは、RGBカメラだけでは、困難な照明条件において明確な全体的トポロジを捉えることができないことが多い。
サーマル信号は、低画質のRGB画像において、ぼやけた領域の輪郭ときめ細かなテクスチャを照らすための情報付加チャネルである。
実用的なrgb-t(thermal)セグメンテーションを目指して,空間認識型需要誘導再帰的メッシュ(spidermesh)フレームワークを体系的に提案する。
1) 需要誘導対象マスキングアルゴリズムにより,光学的障害領域における不適切な文脈意味を積極的に補償する。
2)マルチモーダルなセマンティクス機能を再帰的メッシュで洗練し,ピクセルレベルのセマンティクス解析性能を向上させる。
さらに,非対称データ拡張手法であるm-cutoutを導入することで,半教師付き学習でrgb-tラベルを十分に活用できる。
MFNetとPST900データセットの大規模な実験により、SpiderMeshは標準的なRGB-Tセグメンテーションベンチマークで最先端のパフォーマンスを達成した。
関連論文リスト
- GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding [101.32590239809113]
Generalized Perception NeRF (GP-NeRF) は、広く使われているセグメンテーションモデルとNeRFを統一されたフレームワークで相互に動作させる新しいパイプラインである。
本稿では,セマンティック蒸留損失(Semantic Distill Loss)とDepth-Guided Semantic Distill Loss(Depth-Guided Semantic Distill Loss)という2つの自己蒸留機構を提案する。
論文 参考訳(メタデータ) (2023-11-20T15:59:41Z) - Channel and Spatial Relation-Propagation Network for RGB-Thermal
Semantic Segmentation [10.344060599932185]
RGB-Thermal (RGB-T)セマンティックセマンティックセグメンテーションは、低照度条件を扱う上で大きな可能性を示している。
RGB-Tセマンティックセグメンテーションの鍵は、RGBと熱画像の相補的性質を効果的に活用することである。
論文 参考訳(メタデータ) (2023-08-24T03:43:47Z) - Residual Spatial Fusion Network for RGB-Thermal Semantic Segmentation [19.41334573257174]
従来の方法では、主にRGBイメージを使用し、照明条件、例えば暗闇の影響が大きい。
近年の研究では、セグメンテーションの補正モダリティとして、熱画像は夜のシナリオに頑健であることが示されている。
本稿では,RGB-TセマンティックセグメンテーションのためのResidual Spatial Fusion Network (RSFNet)を提案する。
論文 参考訳(メタデータ) (2023-06-17T14:28:08Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
カラー誘導DSRのためのSymmetric Uncertainty-aware Feature Transmission (SUFT)を提案する。
本手法は最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T06:35:59Z) - Clothes Grasping and Unfolding Based on RGB-D Semantic Segmentation [21.950751953721817]
セグメンテーションのための双方向フラクタルクロスフュージョンネットワーク(BiFCNet)を提案する。
我々は、Fractal Cross FusionモジュールがRGBと深度データを融合するネットワークへの入力として、リッチな色特徴を持つRGB画像を使用する。
実データ収集のコストを削減するため,敵対的戦略に基づくデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2023-05-05T03:21:55Z) - Complementary Random Masking for RGB-Thermal Semantic Segmentation [63.93784265195356]
RGB-熱的セマンティックセグメンテーションは、悪天候や照明条件における信頼性の高いセマンティックセマンティックセマンティック理解を実現するための潜在的ソリューションである。
本稿では,1)RGB-T画像の相補的ランダムマスキング戦略,2)クリーンモードとマスク入力モードの自己蒸留損失を提案する。
3つのRGB-Tセマンティックセマンティックセグメンテーションベンチマークで最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-03-30T13:57:21Z) - Spherical Space Feature Decomposition for Guided Depth Map
Super-Resolution [123.04455334124188]
誘導深度マップ超解像(GDSR)は、低解像度(LR)深度マップに高解像度(HR)RGB画像を含む追加情報を加えることを目的としている。
本稿では,この問題を解決するために,Spherical Space Feature Decomposition Network (SSDNet)を提案する。
提案手法は,4つのテストデータセットの最先端結果と実世界のシーンへの一般化を実現する。
論文 参考訳(メタデータ) (2023-03-15T21:22:21Z) - Mirror Complementary Transformer Network for RGB-thermal Salient Object
Detection [16.64781797503128]
RGB-熱的物体検出(RGB-T SOD)は、視光対と熱赤外画像対の一般的な顕著な物体を見つけることを目的としている。
本稿では,RGB-T SODのための新しいミラー補完トランスフォーマネットワーク(MCNet)を提案する。
ベンチマークとVT723データセットの実験により、提案手法は最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-07-07T20:26:09Z) - TBNet:Two-Stream Boundary-aware Network for Generic Image Manipulation
Localization [49.521622399483846]
汎用画像操作のローカライゼーションのための新しいエンド・ツー・エンド2ストリーム境界対応ネットワーク(TBNet)を提案する。
提案したTBNetは、MCCとF1の両方の観点から、最先端の汎用画像操作のローカライズ手法を大幅に上回ることができる。
論文 参考訳(メタデータ) (2021-08-10T08:22:05Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
深度情報はRGBD画像のセマンティックセグメンテーションにおいて有用であることが証明されている。
既存のほとんどの研究は、深度測定がRGBピクセルと正確で整合していると仮定し、問題をモーダルな特徴融合としてモデル化している。
本稿では,RGB特徴量応答を効果的に再検討するだけでなく,複数の段階を通して正確な深度情報を抽出し,代わりに2つの補正表現を集約する,統一的で効率的なクロスモダリティガイドを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。