A Wigner quasiprobability distribution of work
- URL: http://arxiv.org/abs/2303.08755v1
- Date: Wed, 15 Mar 2023 16:49:35 GMT
- Title: A Wigner quasiprobability distribution of work
- Authors: Federico Cerisola, Franco Mayo, Augusto J. Roncaglia
- Abstract summary: A quasiprobability distribution of work can be defined in terms of the Wigner function of the apparatus.
It is shown that the presence of quantum coherence in the energy eigenbasis is related with the appearance of characteristics related to non-classicality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article we introduce a quasiprobability distribution of work that is
based on the Wigner function. This construction rests on the idea that the work
done on an isolated system can be coherently measured by coupling the system to
a quantum measurement apparatus. In this way, a quasiprobability distribution
of work can be defined in terms of the Wigner function of the apparatus. This
quasidistribution contains the information of the work statistics and also
holds a clear operational definition. Moreover, it is shown that the presence
of quantum coherence in the energy eigenbasis is related with the appearance of
characteristics related to non-classicality in the Wigner function such as
negativity and interference fringes. On the other hand, from this
quasiprobability distribution it is straightforward to obtain the standard
two-point measurement probability distribution of work and also the difference
in average energy for initial states with coherences.
Related papers
- Quasi-probability distribution of work in a measurement-based quantum Otto engine [0.0]
We study the work statistics of a measurement-based quantum Otto engine, where quantum non-selective measurements are used to fuel the engine.
We demonstrate that the probability of certain values of work can be negative, rendering itself akin to the quasi-probability distribution found in phase space.
arXiv Detail & Related papers (2024-07-03T16:09:10Z) - Interferometry of quantum correlation functions to access quasiprobability distribution of work [0.0]
We use an interferometric scheme aided by an auxiliary system to reconstruct the Kirkwood-Dirac quasiprobability distribution.
Our results clarify the physical meaning of the work quasiprobability distribution in the context of quantum thermodynamics.
arXiv Detail & Related papers (2024-05-31T17:32:02Z) - Exploring quasiprobability approach to quantum work in the presence of
initial coherence: Advantages of the Margenau-Hill distribution [3.163257448717563]
In quantum thermodynamics, the two-projective-measurement scheme provides a successful description of work only in the absence of initial quantum coherence.
Extending the quantum work distribution to quasiprobability is a general approach to characterize work fluctuation in the presence of initial coherence.
We list several physically reasonable requirements including the first law of thermodynamics, time-reversal symmetry, positivity of second-order moment, and a support condition for the work distribution.
We prove that the only definition that satisfies all these requirements is the Margenau-Hill (MH) quasiprobability of work.
arXiv Detail & Related papers (2023-06-19T13:27:47Z) - Quasiprobability distribution of work in the quantum Ising model [0.0]
We try to clarify the genuinely quantum features of the process by studying the work quasiprobability for an Ising model in a transverse field.
We examine the critical features related to a quantum phase transition and the role of the initial quantum coherence as useful resource.
arXiv Detail & Related papers (2023-02-22T10:07:49Z) - Special functions in quantum phase estimation [61.12008553173672]
We focus on two special functions. One is prolate spheroidal wave function, which approximately gives the maximum probability that the difference between the true parameter and the estimate is smaller than a certain threshold.
The other is Mathieu function, which exactly gives the optimum estimation under the energy constraint.
arXiv Detail & Related papers (2023-02-14T08:33:24Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Distribution Regression with Sliced Wasserstein Kernels [45.916342378789174]
We propose the first OT-based estimator for distribution regression.
We study the theoretical properties of a kernel ridge regression estimator based on such representation.
arXiv Detail & Related papers (2022-02-08T15:21:56Z) - Finite resolution ancilla-assisted measurements of quantum work
distributions [77.34726150561087]
We consider an ancilla-assisted protocol measuring the work done on a quantum system driven by a time-dependent Hamiltonian.
We consider system Hamiltonians which both commute and do not commute at different times, finding corrections to fluctuation relations like the Jarzynski equality and the Crooks relation.
arXiv Detail & Related papers (2021-11-30T15:08:25Z) - GFlowNet Foundations [66.69854262276391]
Generative Flow Networks (GFlowNets) have been introduced as a method to sample a diverse set of candidates in an active learning context.
We show a number of additional theoretical properties of GFlowNets.
arXiv Detail & Related papers (2021-11-17T17:59:54Z) - Class of quasiprobability distributions of work and initial quantum
coherence [0.0]
We study a class of quasiprobability distributions of work, which give an average work equal to the average energy change of the system.
We find a fluctuation theorem involving quantum coherence, from which follows a second law of thermodynamics.
arXiv Detail & Related papers (2021-10-03T10:56:07Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.