Finite resolution ancilla-assisted measurements of quantum work
distributions
- URL: http://arxiv.org/abs/2111.15470v2
- Date: Fri, 15 Apr 2022 16:07:09 GMT
- Title: Finite resolution ancilla-assisted measurements of quantum work
distributions
- Authors: Shadi Ali Ahmad and Alexander R. H. Smith
- Abstract summary: We consider an ancilla-assisted protocol measuring the work done on a quantum system driven by a time-dependent Hamiltonian.
We consider system Hamiltonians which both commute and do not commute at different times, finding corrections to fluctuation relations like the Jarzynski equality and the Crooks relation.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Work is an observable quantity associated with a process, however there is no
Hermitian operator associated with its measurement. We consider an
ancilla-assisted protocol measuring the work done on a quantum system driven by
a time-dependent Hamiltonian via two von-Neumann measurements of the system's
energy carried out by a measuring apparatus modeled as a free particle of
finite localization and interaction time with the system. We consider system
Hamiltonians which both commute and do not commute at different times, finding
corrections to fluctuation relations like the Jarzynski equality and the Crooks
relation. This measurement model allows us to quantify the effect that
measuring has on the estimated work distribution, and associated average work
done on the system and average heat exchanged with the measuring apparatus.
Related papers
- Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems [49.1574468325115]
The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
arXiv Detail & Related papers (2024-07-16T13:42:38Z) - Interferometry of quantum correlation functions to access quasiprobability distribution of work [0.0]
We use an interferometric scheme aided by an auxiliary system to reconstruct the Kirkwood-Dirac quasiprobability distribution.
Our results clarify the physical meaning of the work quasiprobability distribution in the context of quantum thermodynamics.
arXiv Detail & Related papers (2024-05-31T17:32:02Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Instantaneous indirect measurement principle in quantum mechanics [8.626149751795754]
We propose a method to obtain the average value of one operator in a certain state by measuring the instantaneous change of the average value of another operator.
For the system to be measured, we find that such measurement neither significantly affects the wave function of the system nor causes wave function collapse of the system.
arXiv Detail & Related papers (2022-07-11T10:46:40Z) - Efficiently Fuelling a Quantum Engine with Incompatible Measurements [0.0]
We present two protocols for work extraction, respectively based on single-shot and time-continuous quantum measurements.
We relate the extractable work to the noise added by quadrature measurements, and present exact results for the work distribution at arbitrary finite time.
arXiv Detail & Related papers (2021-07-28T09:32:35Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - From Non-Hermitian Linear Response to Dynamical Correlations and
Fluctuation-Dissipation Relations in Quantum Many-Body Systems [0.0]
We propose a technique for measuring unequal-time anti-commutators using the linear response of a system to a non-Hermitian perturbation.
We relate the scheme to the quantum Zeno effect and weak measurements, and illustrate possible implementations.
arXiv Detail & Related papers (2021-04-08T18:00:06Z) - Stochastic process emerged from lattice fermion systems by repeated
measurements and large-time limit [0.0]
In quantum theory, measurements may suppress Hamiltonian dynamics of a system.
In the present paper, we consider the long time repeated measurements and the dynamics of quantum body systems.
arXiv Detail & Related papers (2020-07-28T01:46:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.