Unifying flavors of fault tolerance with the ZX calculus
- URL: http://arxiv.org/abs/2303.08829v3
- Date: Wed, 12 Jun 2024 14:36:11 GMT
- Title: Unifying flavors of fault tolerance with the ZX calculus
- Authors: Hector Bombin, Daniel Litinski, Naomi Nickerson, Fernando Pastawski, Sam Roberts,
- Abstract summary: We focus on models of topological fault tolerance - specifically surface codes.
We find that all of these models can be viewed as different flavors of the same underlying stabilizer fault-tolerance structure.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There are several models of quantum computation which exhibit shared fundamental fault-tolerance properties. This article makes commonalities explicit by presenting these different models in a unifying framework based on the ZX calculus. We focus on models of topological fault tolerance - specifically surface codes - including circuit-based, measurement-based and fusion-based quantum computation, as well as the recently introduced model of Floquet codes. We find that all of these models can be viewed as different flavors of the same underlying stabilizer fault-tolerance structure, and sustain this through a set of local equivalence transformations which allow mapping between flavors. We anticipate that this unifying perspective will pave the way to transferring progress among the different views of stabilizer fault-tolerance and help researchers familiar with one model easily understand others.
Related papers
- A theoretical framework for overfitting in energy-based modeling [5.1337384597700995]
We investigate the impact of limited data on training pairwise energy-based models for inverse problems aimed at identifying interaction networks.
We dissect training trajectories across the eigenbasis of the coupling matrix, exploiting the independent evolution of eigenmodes.
We show that finite data corrections can be accurately modeled through random matrix theory calculations.
arXiv Detail & Related papers (2025-01-31T14:21:02Z) - Making Quantum Collision Models Exact [0.7499722271664147]
Quantum collision describe open quantum systems through repeated interactions with a coarse-grained environment.
No complete error bounds on the simulation of system observables have been established.
We show that Markovian and non-Markovian collision models can be recovered analytically from chain mapping techniques.
arXiv Detail & Related papers (2024-11-20T10:01:10Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
We show that variational Bayesian methods can yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models.
We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.
arXiv Detail & Related papers (2021-07-08T03:40:18Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Considering discrepancy when calibrating a mechanistic electrophysiology
model [41.77362715012383]
Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions.
In this piece we draw attention to an important and under-addressed source of uncertainty in our predictions -- that of uncertainty in the model structure or the equations themselves.
arXiv Detail & Related papers (2020-01-13T13:26:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.