On the Benefits of Leveraging Structural Information in Planning Over
the Learned Model
- URL: http://arxiv.org/abs/2303.08856v1
- Date: Wed, 15 Mar 2023 18:18:01 GMT
- Title: On the Benefits of Leveraging Structural Information in Planning Over
the Learned Model
- Authors: Jiajun Shen, Kananart Kuwaranancharoen, Raid Ayoub, Pietro Mercati,
Shreyas Sundaram
- Abstract summary: We investigate the benefits of leveraging structural information about the system in terms of reducing sample complexity.
Our analysis shows that there can be a significant saving in sample complexity by leveraging structural information about the model.
- Score: 3.3512508970931236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based Reinforcement Learning (RL) integrates learning and planning and
has received increasing attention in recent years. However, learning the model
can incur a significant cost (in terms of sample complexity), due to the need
to obtain a sufficient number of samples for each state-action pair. In this
paper, we investigate the benefits of leveraging structural information about
the system in terms of reducing sample complexity. Specifically, we consider
the setting where the transition probability matrix is a known function of a
number of structural parameters, whose values are initially unknown. We then
consider the problem of estimating those parameters based on the interactions
with the environment. We characterize the difference between the Q estimates
and the optimal Q value as a function of the number of samples. Our analysis
shows that there can be a significant saving in sample complexity by leveraging
structural information about the model. We illustrate the findings by
considering several problems including controlling a queuing system with
heterogeneous servers, and seeking an optimal path in a stochastic windy
gridworld.
Related papers
- From Displacements to Distributions: A Machine-Learning Enabled
Framework for Quantifying Uncertainties in Parameters of Computational Models [0.09208007322096533]
This work presents novel extensions for combining two frameworks for quantifying uncertainties in the modeling of engineered systems.
The data-consistent iteration (DC) framework poses an inverse problem and solution for quantifying aleatoric uncertainties in terms of pullback and push-forward measures for a given Quantity of Interest (QoI) map.
The Learning Uncertain Quantities (LUQ) framework defines a formal three-step machine-learning enabled process for transforming noisy datasets into samples of a learned QoI map.
arXiv Detail & Related papers (2024-03-04T20:40:50Z) - On the Role of Information Structure in Reinforcement Learning for Partially-Observable Sequential Teams and Games [55.2480439325792]
In a sequential decision-making problem, the information structure is the description of how events in the system occurring at different points in time affect each other.
By contrast, real-world sequential decision-making problems typically involve a complex and time-varying interdependence of system variables.
We formalize a novel reinforcement learning model which explicitly represents the information structure.
arXiv Detail & Related papers (2024-03-01T21:28:19Z) - Balancing Explainability-Accuracy of Complex Models [8.402048778245165]
We introduce a new approach for complex models based on the co-relation impact.
We propose approaches for both scenarios of independent features and dependent features.
We provide an upper bound of the complexity of our proposed approach for the dependent features.
arXiv Detail & Related papers (2023-05-23T14:20:38Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
We propose a general framework that unifies model-based and model-free reinforcement learning.
We propose a novel estimation function with decomposable structural properties for optimization-based exploration.
Under our framework, a new sample-efficient algorithm namely OPtimization-based ExploRation with Approximation (OPERA) is proposed.
arXiv Detail & Related papers (2022-09-30T17:59:16Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Scalable Gaussian Processes for Data-Driven Design using Big Data with
Categorical Factors [14.337297795182181]
Gaussian processes (GP) have difficulties in accommodating big datasets, categorical inputs, and multiple responses.
We propose a GP model that utilizes latent variables and functions obtained through variational inference to address the aforementioned challenges simultaneously.
Our approach is demonstrated for machine learning of ternary oxide materials and topology optimization of a multiscale compliant mechanism.
arXiv Detail & Related papers (2021-06-26T02:17:23Z) - A Forward Backward Greedy approach for Sparse Multiscale Learning [0.0]
We propose a feature driven Reproducing Kernel Hilbert space (RKHS) for which the associated kernel has a weighted multiscale structure.
For generating approximations in this space, we provide a practical forward-backward algorithm that is shown to greedily construct a set of basis functions having a multiscale structure.
We analyze the performance of the approach on a variety of simulation and real data sets.
arXiv Detail & Related papers (2021-02-14T04:22:52Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.