EvalAttAI: A Holistic Approach to Evaluating Attribution Maps in Robust
and Non-Robust Models
- URL: http://arxiv.org/abs/2303.08866v1
- Date: Wed, 15 Mar 2023 18:33:22 GMT
- Title: EvalAttAI: A Holistic Approach to Evaluating Attribution Maps in Robust
and Non-Robust Models
- Authors: Ian E. Nielsen, Ravi P. Ramachandran, Nidhal Bouaynaya, Hassan M.
Fathallah-Shaykh, Ghulam Rasool
- Abstract summary: This paper focuses on evaluating methods of attribution mapping to find whether robust neural networks are more explainable.
We propose a new explainability faithfulness metric (called EvalAttAI) that addresses the limitations of prior metrics.
- Score: 0.3425341633647624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The expansion of explainable artificial intelligence as a field of research
has generated numerous methods of visualizing and understanding the black box
of a machine learning model. Attribution maps are generally used to highlight
the parts of the input image that influence the model to make a specific
decision. On the other hand, the robustness of machine learning models to
natural noise and adversarial attacks is also being actively explored. This
paper focuses on evaluating methods of attribution mapping to find whether
robust neural networks are more explainable. We explore this problem within the
application of classification for medical imaging. Explainability research is
at an impasse. There are many methods of attribution mapping, but no current
consensus on how to evaluate them and determine the ones that are the best. Our
experiments on multiple datasets (natural and medical imaging) and various
attribution methods reveal that two popular evaluation metrics, Deletion and
Insertion, have inherent limitations and yield contradictory results. We
propose a new explainability faithfulness metric (called EvalAttAI) that
addresses the limitations of prior metrics. Using our novel evaluation, we
found that Bayesian deep neural networks using the Variational Density
Propagation technique were consistently more explainable when used with the
best performing attribution method, the Vanilla Gradient. However, in general,
various types of robust neural networks may not be more explainable, despite
these models producing more visually plausible attribution maps.
Related papers
- Toward Understanding the Disagreement Problem in Neural Network Feature Attribution [0.8057006406834466]
neural networks have demonstrated their remarkable ability to discern intricate patterns and relationships from raw data.
Understanding the inner workings of these black box models remains challenging, yet crucial for high-stake decisions.
Our work addresses this confusion by investigating the explanations' fundamental and distributional behavior.
arXiv Detail & Related papers (2024-04-17T12:45:59Z) - CNN-based explanation ensembling for dataset, representation and explanations evaluation [1.1060425537315088]
We explore the potential of ensembling explanations generated by deep classification models using convolutional model.
Through experimentation and analysis, we aim to investigate the implications of combining explanations to uncover a more coherent and reliable patterns of the model's behavior.
arXiv Detail & Related papers (2024-04-16T08:39:29Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - On Modifying a Neural Network's Perception [3.42658286826597]
We propose a method which allows one to modify what an artificial neural network is perceiving regarding specific human-defined concepts.
We test the proposed method on different models, assessing whether the performed manipulations are well interpreted by the models, and analyzing how they react to them.
arXiv Detail & Related papers (2023-03-05T12:09:37Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Multi-Semantic Image Recognition Model and Evaluating Index for
explaining the deep learning models [31.387124252490377]
We first propose a multi-semantic image recognition model, which enables human beings to understand the decision-making process of the neural network.
We then presents a new evaluation index, which can quantitatively assess the model interpretability.
This paper also exhibits the relevant baseline performance with current state-of-the-art deep learning models.
arXiv Detail & Related papers (2021-09-28T07:18:05Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input.
We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors.
arXiv Detail & Related papers (2021-06-20T08:20:56Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Explaining Convolutional Neural Networks through Attribution-Based Input
Sampling and Block-Wise Feature Aggregation [22.688772441351308]
Methods based on class activation mapping and randomized input sampling have gained great popularity.
However, the attribution methods provide lower resolution and blurry explanation maps that limit their explanation power.
In this work, we collect visualization maps from multiple layers of the model based on an attribution-based input sampling technique.
We also propose a layer selection strategy that applies to the whole family of CNN-based models.
arXiv Detail & Related papers (2020-10-01T20:27:30Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.