CNN-based explanation ensembling for dataset, representation and explanations evaluation
- URL: http://arxiv.org/abs/2404.10387v1
- Date: Tue, 16 Apr 2024 08:39:29 GMT
- Title: CNN-based explanation ensembling for dataset, representation and explanations evaluation
- Authors: Weronika Hryniewska-Guzik, Luca Longo, Przemysław Biecek,
- Abstract summary: We explore the potential of ensembling explanations generated by deep classification models using convolutional model.
Through experimentation and analysis, we aim to investigate the implications of combining explanations to uncover a more coherent and reliable patterns of the model's behavior.
- Score: 1.1060425537315088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable Artificial Intelligence has gained significant attention due to the widespread use of complex deep learning models in high-stake domains such as medicine, finance, and autonomous cars. However, different explanations often present different aspects of the model's behavior. In this research manuscript, we explore the potential of ensembling explanations generated by deep classification models using convolutional model. Through experimentation and analysis, we aim to investigate the implications of combining explanations to uncover a more coherent and reliable patterns of the model's behavior, leading to the possibility of evaluating the representation learned by the model. With our method, we can uncover problems of under-representation of images in a certain class. Moreover, we discuss other side benefits like features' reduction by replacing the original image with its explanations resulting in the removal of some sensitive information. Through the use of carefully selected evaluation metrics from the Quantus library, we demonstrated the method's superior performance in terms of Localisation and Faithfulness, compared to individual explanations.
Related papers
- Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models.
We present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models.
arXiv Detail & Related papers (2024-04-03T22:39:33Z) - Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainer is a novel framework that, leveraging language-vision models, enables multimodal global explainability.
It employs diffusion models conditioned on optimized text prompts, synthesizing images that maximize class outputs.
The analysis of generated visual descriptions allows for automatic identification of biases and spurious features.
arXiv Detail & Related papers (2024-04-03T10:11:22Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - EvalAttAI: A Holistic Approach to Evaluating Attribution Maps in Robust
and Non-Robust Models [0.3425341633647624]
This paper focuses on evaluating methods of attribution mapping to find whether robust neural networks are more explainable.
We propose a new explainability faithfulness metric (called EvalAttAI) that addresses the limitations of prior metrics.
arXiv Detail & Related papers (2023-03-15T18:33:22Z) - This looks more like that: Enhancing Self-Explaining Models by
Prototypical Relevance Propagation [17.485732906337507]
We present a case study of the self-explaining network, ProtoPNet, in the presence of a spectrum of artifacts.
We introduce a novel method for generating more precise model-aware explanations.
In order to obtain a clean dataset, we propose to use multi-view clustering strategies for segregating the artifact images.
arXiv Detail & Related papers (2021-08-27T09:55:53Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Explainers in the Wild: Making Surrogate Explainers Robust to
Distortions through Perception [77.34726150561087]
We propose a methodology to evaluate the effect of distortions in explanations by embedding perceptual distances.
We generate explanations for images in the Imagenet-C dataset and demonstrate how using a perceptual distances in the surrogate explainer creates more coherent explanations for the distorted and reference images.
arXiv Detail & Related papers (2021-02-22T12:38:53Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.