論文の概要: Enhancing Data Space Semantic Interoperability through Machine Learning:
a Visionary Perspective
- arxiv url: http://arxiv.org/abs/2303.08932v1
- Date: Wed, 15 Mar 2023 20:57:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 17:48:48.995223
- Title: Enhancing Data Space Semantic Interoperability through Machine Learning:
a Visionary Perspective
- Title(参考訳): 機械学習によるデータ空間セマンティック相互運用性の強化:ビジョン的視点
- Authors: Zeyd Boukhers and Christoph Lange and Oya Beyan
- Abstract要約: 我々のビジョンペーパーは、機械学習の適用を通じて、データ空間におけるセマンティックインターオペラビリティの未来を改善する計画の概要を述べている。
機械学習のパワーを活用することで、データ空間におけるセマンティック相互運用性を大幅に改善できると考えています。
データ空間の将来に対する私たちのビジョンは、従来のデータ交換の限界に対処し、コミュニティのすべてのメンバーにとってよりアクセスしやすく、価値のあるデータを提供します。
- 参考スコア(独自算出の注目度): 5.994412766684842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our vision paper outlines a plan to improve the future of semantic
interoperability in data spaces through the application of machine learning.
The use of data spaces, where data is exchanged among members in a
self-regulated environment, is becoming increasingly popular. However, the
current manual practices of managing metadata and vocabularies in these spaces
are time-consuming, prone to errors, and may not meet the needs of all
stakeholders. By leveraging the power of machine learning, we believe that
semantic interoperability in data spaces can be significantly improved. This
involves automatically generating and updating metadata, which results in a
more flexible vocabulary that can accommodate the diverse terminologies used by
different sub-communities. Our vision for the future of data spaces addresses
the limitations of conventional data exchange and makes data more accessible
and valuable for all members of the community.
- Abstract(参考訳): 我々のビジョンペーパーは、機械学習の適用を通じて、データ空間におけるセマンティックインターオペラビリティの未来を改善する計画の概要である。
自己規制された環境のメンバ間でデータ交換を行うデータ空間の利用は、ますます人気が高まっている。
しかしながら、これらの空間におけるメタデータと語彙を管理する現在の手動のプラクティスは、時間がかかり、エラーを起こしやすく、すべての利害関係者のニーズを満たしていない可能性がある。
機械学習のパワーを活用することで、データ空間におけるセマンティック相互運用性を大幅に改善できると考えています。
これはメタデータの自動生成と更新を伴い、様々なサブコミュニティが使用する多様な用語に対応可能な、より柔軟な語彙となる。
データ空間の将来に対する私たちのビジョンは、従来のデータ交換の限界に対処し、コミュニティのすべてのメンバーにとってよりアクセスしやすく、価値のあるデータを提供します。
関連論文リスト
- Robotic Skill Acquisition via Instruction Augmentation with
Vision-Language Models [70.82705830137708]
言語条件制御のためのデータ駆動型インストラクション拡張(DIAL)について紹介する。
我々は,CLIPのセマンティック理解を利用したセミ言語ラベルを用いて,未知の実演データの大規模なデータセットに知識を伝達する。
DIALは、模倣学習ポリシーによって、新しい能力を獲得し、元のデータセットにない60の新しい命令を一般化することができる。
論文 参考訳(メタデータ) (2022-11-21T18:56:00Z) - Privacy-Preserving Machine Learning for Collaborative Data Sharing via
Auto-encoder Latent Space Embeddings [57.45332961252628]
データ共有プロセスにおけるプライバシ保護機械学習は、極めて重要なタスクである。
本稿では、オートエンコーダによる表現学習を用いて、プライバシーを保護した組込みデータを生成する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-10T17:36:58Z) - Understanding the World Through Action [91.3755431537592]
ラベルのないデータを利用するための汎用的で原則的で強力なフレームワークは、強化学習から導き出すことができると私は主張する。
このような手順が、下流の潜在的なタスクとどのように密接に一致しているかについて論じます。
論文 参考訳(メタデータ) (2021-10-24T22:33:52Z) - Meta-Learning with Variational Semantic Memory for Word Sense
Disambiguation [56.830395467247016]
メタ学習環境におけるWSDのセマンティックメモリモデルを提案する。
我々のモデルは階層的変動推論に基づいており、ハイパーネットワークを介して適応的なメモリ更新ルールを組み込んでいる。
極めて少ないシナリオでの効果的な学習を支援するために,本モデルがWSDで最先端の技術を数ショットで実現していることを示す。
論文 参考訳(メタデータ) (2021-06-05T20:40:01Z) - Language in a (Search) Box: Grounding Language Learning in Real-World
Human-Machine Interaction [4.137464623395377]
ユーザデータのみから、接地領域、表記関数、合成関数がどのように学習されるかを示す。
合成性およびゼロショット推論タスクに関する基礎的セマンティクスをベンチマークする。
論文 参考訳(メタデータ) (2021-04-18T15:03:16Z) - Synthetic Data: Opening the data floodgates to enable faster, more
directed development of machine learning methods [96.92041573661407]
機械学習における画期的な進歩の多くは、大量のリッチデータを利用できることに起因する。
多くの大規模データセットは、医療データなど高度に敏感であり、機械学習コミュニティでは広く利用できない。
プライバシー保証で合成データを生成することは、そのようなソリューションを提供します。
論文 参考訳(メタデータ) (2020-12-08T17:26:10Z) - DomainMix: Learning Generalizable Person Re-Identification Without Human
Annotations [89.78473564527688]
本稿では,ラベル付き合成データセットとラベル付き実世界のデータセットを用いてユニバーサルモデルをトレーニングする方法を示す。
このように、人間のアノテーションはもはや不要であり、大規模で多様な現実世界のデータセットにスケーラブルである。
実験結果から,提案手法は完全な人間のアノテーションで訓練されたアノテーションとほぼ同等であることがわかった。
論文 参考訳(メタデータ) (2020-11-24T08:15:53Z) - On the Effects of Knowledge-Augmented Data in Word Embeddings [0.6749750044497732]
単語埋め込み学習のためのデータ拡張による言語知識注入のための新しい手法を提案する。
提案手法は,学習した埋め込みの本質的な特性を向上すると同時に,下流テキスト分類タスクにおける結果の大幅な変更は行わない。
論文 参考訳(メタデータ) (2020-10-05T02:14:13Z) - DeCLUTR: Deep Contrastive Learning for Unsupervised Textual
Representations [4.36561468436181]
教師なしテキスト表現のためのDeCLUTR: Deep Contrastive Learningを提案する。
本手法は,ユニバーサル文エンコーダにおける教師なしと教師なしの事前学習のパフォーマンスギャップを埋めるものである。
私たちのコードと事前訓練されたモデルは公開されており、新しいドメインに簡単に適応したり、目に見えないテキストを埋め込むのに使えます。
論文 参考訳(メタデータ) (2020-06-05T20:00:28Z) - Trajectory annotation using sequences of spatial perception [0.0]
近い将来、より多くのマシンが人間の空間の近くでタスクを実行するようになる。
この作業は、この課題に対処するための基盤を構築します。
本稿では,ニューラルオートエンコーディングに基づく教師なし学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-11T12:22:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。