Optimal control of distributed ensembles with application to Bloch
equations
- URL: http://arxiv.org/abs/2303.08974v1
- Date: Wed, 15 Mar 2023 22:54:51 GMT
- Title: Optimal control of distributed ensembles with application to Bloch
equations
- Authors: Roman Chertovskih, Nikolay Pogodaev, Maxim Staritsyn, Antonio Pedro
Aguiar
- Abstract summary: We study an optimal ensemble control problem in a probabilistic setting with a general nonlinear performance criterion.
We derive an exact representation of the increment of the cost functional in terms of the flow of the driving vector field.
The numerical method is applied to solve new control problems for distributed ensembles of Bloch equations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the problem of designing robust composite pulses for Bloch
equations in the presence of natural perturbations, we study an abstract
optimal ensemble control problem in a probabilistic setting with a general
nonlinear performance criterion. The model under study addresses mean-field
dynamics described by a linear continuity equation in the space of probability
measures. For the resulting optimization problem, we derive an exact
representation of the increment of the cost functional in terms of the flow of
the driving vector field. Relying on the exact increment formula, a descent
method is designed that is free of any internal line search. The numerical
method is applied to solve new control problems for distributed ensembles of
Bloch equations.
Related papers
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
We propose a simulation-free algorithm for the solution of generic problems in optimal control (SOC)
Unlike existing methods, our approach does not require the solution of an adjoint problem.
arXiv Detail & Related papers (2024-10-07T16:16:53Z) - Randomized algorithms and PAC bounds for inverse reinforcement learning in continuous spaces [47.907236421762626]
This work studies discrete-time discounted Markov decision processes with continuous state and action spaces.
We first consider the case in which we have access to the entire expert policy and characterize the set of solutions to the inverse problem.
arXiv Detail & Related papers (2024-05-24T12:53:07Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - The Neural Network shifted-Proper Orthogonal Decomposition: a Machine
Learning Approach for Non-linear Reduction of Hyperbolic Equations [0.0]
In this work we approach the problem of automatically detecting the correct pre-processing transformation in a statistical learning framework.
The purely data-driven method allowed us to generalise the existing approaches of linear subspace manipulation to non-linear hyperbolic problems with unknown advection fields.
The proposed algorithm has been validated against simple test cases to benchmark its performances and later successfully applied to a multiphase simulation.
arXiv Detail & Related papers (2021-08-14T15:13:35Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
We propose a numerical scheme based on Random Projection Neural Networks (RPNN) for the solution of Ordinary Differential Equations (ODEs)
We show that our proposed scheme yields good numerical approximation accuracy without being affected by the stiffness, thus outperforming in same cases the textttode45 and textttode15s functions.
arXiv Detail & Related papers (2021-08-03T15:49:17Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - Linear-Time Probabilistic Solutions of Boundary Value Problems [27.70274403550477]
We introduce a Gauss--Markov prior and tailor it specifically to BVPs.
This allows computing a posterior distribution over the solution in linear time, at a quality and cost comparable to that of well-established, non-probabilistic methods.
arXiv Detail & Related papers (2021-06-14T21:19:17Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
We show that ODE searches for optimal control for an unknown computation system by directly searching over the corresponding space of controllers.
We take a step towards demystifying the performance and efficiency of such methods by focusing on the gradient-flow dynamics set of stabilizing feedback gains and a similar result holds for the forward disctization of the ODE.
arXiv Detail & Related papers (2019-12-26T16:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.