論文の概要: Fast and Accurate Object Detection on Asymmetrical Receptive Field
- arxiv url: http://arxiv.org/abs/2303.08995v1
- Date: Wed, 15 Mar 2023 23:59:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 17:20:27.288756
- Title: Fast and Accurate Object Detection on Asymmetrical Receptive Field
- Title(参考訳): 非対称受容場における高速高精度物体検出
- Authors: Liguo Zhou, Tianhao Lin, Alois Knoll
- Abstract要約: 本稿では,物体検出精度を受容場の変化の観点から改善する手法を提案する。
YOLOv5の頭部の構造は、非対称なプール層を付加することによって改変される。
本稿では, 従来の YOLOv5 モデルと比較し, いくつかのパラメータから解析する。
- 参考スコア(独自算出の注目度): 4.392212820170972
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Object detection has been used in a wide range of industries. For example, in
autonomous driving, the task of object detection is to accurately and
efficiently identify and locate a large number of predefined classes of object
instances (vehicles, pedestrians, traffic signs, etc.) from videos of roads. In
robotics, the industry robot needs to recognize specific machine elements. In
the security field, the camera should accurately recognize each face of people.
With the wide application of deep learning, the accuracy and efficiency of
object detection have been greatly improved, but object detection based on deep
learning still faces challenges. Different applications of object detection
have different requirements, including highly accurate detection,
multi-category object detection, real-time detection, robustness to occlusions,
etc. To address the above challenges, based on extensive literature research,
this paper analyzes methods for improving and optimizing mainstream object
detection algorithms from the perspective of evolution of one-stage and
two-stage object detection algorithms. Furthermore, this article proposes
methods for improving object detection accuracy from the perspective of
changing receptive fields. The new model is based on the original YOLOv5 (You
Look Only Once) with some modifications. The structure of the head part of
YOLOv5 is modified by adding asymmetrical pooling layers. As a result, the
accuracy of the algorithm is improved while ensuring the speed. The
performances of the new model in this article are compared with original YOLOv5
model and analyzed from several parameters. And the evaluation of the new model
is presented in four situations. Moreover, the summary and outlooks are made on
the problems to be solved and the research directions in the future.
- Abstract(参考訳): 物体検出は幅広い産業で使われている。
例えば、自動運転では、オブジェクト検出のタスクは、道路のビデオから、事前定義された多数のオブジェクトインスタンスのクラス(車両、歩行者、交通標識など)を、正確かつ効率的に識別し、特定することである。
ロボット工学では、産業ロボットは特定の機械要素を認識する必要がある。
セキュリティ分野では、カメラは人の顔を正確に認識する必要がある。
ディープラーニングの幅広い応用により、オブジェクト検出の精度と効率は大幅に改善されたが、ディープラーニングに基づくオブジェクト検出は依然として課題に直面している。
オブジェクト検出の異なるアプリケーションには、高精度な検出、複数カテゴリのオブジェクト検出、リアルタイム検出、閉塞に対する堅牢性など、さまざまな要件がある。
以上の課題に対処するため,本研究では,一段階および二段階のオブジェクト検出アルゴリズムの進化の観点から,主流オブジェクト検出アルゴリズムの改良と最適化を行う手法について分析する。
さらに,物体検出の精度を受容場の変化の観点から向上させる手法を提案する。
新モデルはオリジナルのYOLOv5(You Look Only Once)をベースとしている。
ヨロフ5の頭部部の構造は、非対称なプーリング層を追加することで変化する。
その結果、アルゴリズムの精度が向上し、速度が確保される。
本稿では, 従来の YOLOv5 モデルと比較し, いくつかのパラメータから解析する。
そして,新しいモデルの評価を4つの状況で示す。
さらに、解決すべき課題と今後の研究の方向性について概要と展望を述べる。
関連論文リスト
- Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - Object Recognition in Different Lighting Conditions at Various Angles by
Deep Learning Method [0.0]
既存のコンピュータビジョンとオブジェクト検出方法は、ニューラルネットワークとディープラーニングに依存している。
本稿では,検出されたボックスの位置に基づいて,さまざまなオブジェクトの名称を分類することを目的とする。
このモデルの精度は,物体の比率やサンプル数に大きく影響されている。
論文 参考訳(メタデータ) (2022-10-18T06:23:26Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
本稿では, ボクセルをベースとした2つの3次元物体検出手法について述べる。
実験の結果,これらの手法は入力点雲が遠距離にあるため,遠距離の小さな物体を検出できないことが確認できた。
この結果から,既存手法の計算のかなりの部分は,検出に寄与しないシーンの位置に着目していることが示唆された。
論文 参考訳(メタデータ) (2021-05-21T12:40:59Z) - Improved detection of small objects in road network sequences [0.0]
本稿では,畳み込みニューラルネットワークによる検出に基づく超解像プロセスを適用し,小型物体の検出手法を提案する。
本研究は, 異なるスケールの要素を含むトラヒック画像の集合に対して, モデルにより得られた検出値に従って効率を試験するために試験された。
論文 参考訳(メタデータ) (2021-05-18T10:13:23Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
物体検出器の分布外一般化を改善するための補助的自己監視タスクの有効性を検討する。
最大エントロピーの原理に触発されて,新しい自己監督タスクであるインスタンスレベル時間サイクル混乱(cycconf)を導入する。
それぞれのオブジェクトに対して、タスクは、ビデオ内の隣接するフレームで最も異なるオブジェクトの提案を見つけ、自己スーパービジョンのために自分自身にサイクルバックすることです。
論文 参考訳(メタデータ) (2021-04-16T21:35:08Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Real Time Multi-Class Object Detection and Recognition Using Vision
Augmentation Algorithm [0.0]
学習課題における畳み込みレベルが異なるマルチスケール特徴を抽出するために,アップサンプリングとスキップ接続を用いた新しいリアルタイム検出アルゴリズムを提案する。
モデルの検出精度は、最先端モデルよりも高く、高速であることが示されている。
論文 参考訳(メタデータ) (2020-03-17T01:08:24Z) - Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning [0.12599533416395764]
本稿では、複数の低計算NAOロボットがカメラビューにおける物体のリアルタイム検出、認識、位置決めを行うことを可能にする新しいアーキテクチャについて述べる。
オブジェクト検出と局所化のためのアルゴリズムは,複数のシナリオにおける屋内実験に基づくYOLOv3の実証的な修正である。
このアーキテクチャは、カメラフィードからニューラルネットにリアルタイムフレームを供給し、その結果を使ってロボットを誘導する効果的なエンドツーエンドパイプラインも備えている。
論文 参考訳(メタデータ) (2020-01-20T05:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。