論文の概要: Fast and Accurate Object Detection on Asymmetrical Receptive Field
- arxiv url: http://arxiv.org/abs/2303.08995v2
- Date: Thu, 8 Aug 2024 09:40:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 21:29:15.711167
- Title: Fast and Accurate Object Detection on Asymmetrical Receptive Field
- Title(参考訳): 非対称受容場における高速かつ高精度物体検出
- Authors: Tianhao Lin,
- Abstract要約: 本稿では,物体検出精度を受容場の変化の観点から改善する手法を提案する。
YOLOv5の頭部の構造は、非対称なプール層を付加することによって改変される。
本稿では, 従来の YOLOv5 モデルと比較し, いくつかのパラメータから解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Object detection has been used in a wide range of industries. For example, in autonomous driving, the task of object detection is to accurately and efficiently identify and locate a large number of predefined classes of object instances (vehicles, pedestrians, traffic signs, etc.) from videos of roads. In robotics, the industry robot needs to recognize specific machine elements. In the security field, the camera should accurately recognize each face of people. With the wide application of deep learning, the accuracy and efficiency of object detection have been greatly improved, but object detection based on deep learning still faces challenges. Different applications of object detection have different requirements, including highly accurate detection, multi-category object detection, real-time detection, robustness to occlusions, etc. To address the above challenges, based on extensive literature research, this paper analyzes methods for improving and optimizing mainstream object detection algorithms from the perspective of evolution of one-stage and two-stage object detection algorithms. Furthermore, this article proposes methods for improving object detection accuracy from the perspective of changing receptive fields. The new model is based on the original YOLOv5 (You Look Only Once) with some modifications. The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers. As a result, the accuracy of the algorithm is improved while ensuring the speed. The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters. And the evaluation of the new model is presented in four situations. Moreover, the summary and outlooks are made on the problems to be solved and the research directions in the future.
- Abstract(参考訳): 物体検出は幅広い産業で使われている。
例えば、自律運転において、物体検出のタスクは、道路のビデオから多数の事前定義されたオブジェクトインスタンス(車両、歩行者、交通標識など)のクラスを正確かつ効率的に識別し、発見することである。
ロボット工学では、産業用ロボットは特定の機械要素を認識する必要がある。
セキュリティ分野では、カメラは人の顔を正確に認識する必要がある。
ディープラーニングの幅広い応用により、オブジェクト検出の精度と効率は大幅に改善されたが、ディープラーニングに基づくオブジェクト検出は依然として課題に直面している。
オブジェクト検出の異なるアプリケーションには、高精度な検出、複数カテゴリのオブジェクト検出、リアルタイム検出、閉塞に対する堅牢性など、さまざまな要件がある。
以上の課題に対処するため,本研究では,一段階および二段階のオブジェクト検出アルゴリズムの進化の観点から,主流オブジェクト検出アルゴリズムの改良と最適化を行う手法について分析する。
さらに,物体検出の精度を受容場の変化の観点から向上させる手法を提案する。
新モデルはオリジナルのYOLOv5(You Look Only Once)をベースとしている。
YOLOv5の頭部の構造は、非対称なプール層を付加することによって改変される。
その結果、アルゴリズムの精度が向上し、速度が保証される。
本稿では, 従来の YOLOv5 モデルと比較し, いくつかのパラメータから解析する。
そして,新しいモデルの評価を4つの状況で示す。
さらに、解決すべき課題と今後の研究方向性について、概要と展望を述べる。
関連論文リスト
- Accelerating Object Detection with YOLOv4 for Real-Time Applications [0.276240219662896]
畳み込みニューラルネットワーク(CNN)は、ほとんどの問題に対して画像コンテンツとコンピュータビジョンアプローチを認識する強力なツールとして登場した。
本稿では、畳み込みニューラルネットワーク(CNN)のようなディープラーニングとオブジェクト検出フレームワークの簡単な紹介を紹介する。
論文 参考訳(メタデータ) (2024-10-17T17:44:57Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - Improved detection of small objects in road network sequences [0.0]
本稿では,畳み込みニューラルネットワークによる検出に基づく超解像プロセスを適用し,小型物体の検出手法を提案する。
本研究は, 異なるスケールの要素を含むトラヒック画像の集合に対して, モデルにより得られた検出値に従って効率を試験するために試験された。
論文 参考訳(メタデータ) (2021-05-18T10:13:23Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Real Time Multi-Class Object Detection and Recognition Using Vision
Augmentation Algorithm [0.0]
学習課題における畳み込みレベルが異なるマルチスケール特徴を抽出するために,アップサンプリングとスキップ接続を用いた新しいリアルタイム検出アルゴリズムを提案する。
モデルの検出精度は、最先端モデルよりも高く、高速であることが示されている。
論文 参考訳(メタデータ) (2020-03-17T01:08:24Z) - Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning [0.12599533416395764]
本稿では、複数の低計算NAOロボットがカメラビューにおける物体のリアルタイム検出、認識、位置決めを行うことを可能にする新しいアーキテクチャについて述べる。
オブジェクト検出と局所化のためのアルゴリズムは,複数のシナリオにおける屋内実験に基づくYOLOv3の実証的な修正である。
このアーキテクチャは、カメラフィードからニューラルネットにリアルタイムフレームを供給し、その結果を使ってロボットを誘導する効果的なエンドツーエンドパイプラインも備えている。
論文 参考訳(メタデータ) (2020-01-20T05:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。