Enhancing Text Generation with Cooperative Training
- URL: http://arxiv.org/abs/2303.09075v3
- Date: Sat, 23 Sep 2023 13:24:28 GMT
- Title: Enhancing Text Generation with Cooperative Training
- Authors: Tong Wu, Hao Wang, Zhongshen Zeng, Wei Wang, Hai-Tao Zheng, Jiaxing
Zhang
- Abstract summary: Most prevailing methods trained generative and discriminative models in isolation, which left them unable to adapt to changes in each other.
We introduce a textitself-consistent learning framework in the text field that involves training a discriminator and generator cooperatively in a closed-loop manner.
Our framework are able to mitigate training instabilities such as mode collapse and non-convergence.
- Score: 23.971227375706327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a surge in the use of generated data to enhance the
performance of downstream models, largely due to the advancements in
pre-trained language models. However, most prevailing methods trained
generative and discriminative models in isolation, which left them unable to
adapt to changes in each other. These approaches lead to generative models that
are prone to deviating from the true data distribution and providing limited
benefits to discriminative models. While some works have proposed jointly
training generative and discriminative language models, their methods remain
challenging due to the non-differentiable nature of discrete data. To overcome
these issues, we introduce a \textit{self-consistent learning} framework in the
text field that involves training a discriminator and generator cooperatively
in a closed-loop manner until a scoring consensus is reached. By learning
directly from selected samples, our framework are able to mitigate training
instabilities such as mode collapse and non-convergence. Extensive experiments
on four downstream benchmarks, including AFQMC, CHIP-STS, QQP, and MRPC,
demonstrate the efficacy of the proposed framework.
Related papers
- Diffusion-Driven Data Replay: A Novel Approach to Combat Forgetting in Federated Class Continual Learning [13.836798036474143]
Key challenge in Federated Class Continual Learning is catastrophic forgetting.
We propose a novel method of data replay based on diffusion models.
Our method significantly outperforms existing baselines.
arXiv Detail & Related papers (2024-09-02T10:07:24Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align)
Our method aims to bolster the model's generalizability by preserving the consistency of spurious features.
Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements.
arXiv Detail & Related papers (2023-10-23T17:12:01Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
We present a non-autoregressive generation model based on pre-trained transformer models.
We propose a simple and effective iterative training method called MIx Source and pseudo Target.
Our experiments on three generation benchmarks including question generation, summarization and paraphrase generation, show that the proposed framework achieves the new state-of-the-art results.
arXiv Detail & Related papers (2021-10-21T13:04:21Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
We propose noise entropy regularisation (NoiER) as an efficient learning paradigm that solves the problem without auxiliary models and additional data.
The proposed approach improved traditional OOD detection evaluation metrics by 55% on average compared to the original fine-tuned models.
arXiv Detail & Related papers (2021-08-29T06:58:28Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Discriminatively-Tuned Generative Classifiers for Robust Natural
Language Inference [59.62779187457773]
We propose a generative classifier for natural language inference (NLI)
We compare it to five baselines, including discriminative models and large-scale pretrained language representation models like BERT.
Experiments show that GenNLI outperforms both discriminative and pretrained baselines across several challenging NLI experimental settings.
arXiv Detail & Related papers (2020-10-08T04:44:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.