FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning
- URL: http://arxiv.org/abs/2310.15105v4
- Date: Fri, 17 Nov 2023 07:27:34 GMT
- Title: FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning
- Authors: Kun Song, Huimin Ma, Bochao Zou, Huishuai Zhang, Weiran Huang
- Abstract summary: In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align)
Our method aims to bolster the model's generalizability by preserving the consistency of spurious features.
Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements.
- Score: 21.693779973263172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the limited availability of data, existing few-shot learning methods
trained from scratch fail to achieve satisfactory performance. In contrast,
large-scale pre-trained models such as CLIP demonstrate remarkable few-shot and
zero-shot capabilities. To enhance the performance of pre-trained models for
downstream tasks, fine-tuning the model on downstream data is frequently
necessary. However, fine-tuning the pre-trained model leads to a decrease in
its generalizability in the presence of distribution shift, while the limited
number of samples in few-shot learning makes the model highly susceptible to
overfitting. Consequently, existing methods for fine-tuning few-shot learning
primarily focus on fine-tuning the model's classification head or introducing
additional structure. In this paper, we introduce a fine-tuning approach termed
Feature Discrimination Alignment (FD-Align). Our method aims to bolster the
model's generalizability by preserving the consistency of spurious features
across the fine-tuning process. Extensive experimental results validate the
efficacy of our approach for both ID and OOD tasks. Once fine-tuned, the model
can seamlessly integrate with existing methods, leading to performance
improvements. Our code can be found in https://github.com/skingorz/FD-Align.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - StochCA: A Novel Approach for Exploiting Pretrained Models with Cross-Attention [2.66269503676104]
We introduce a novel fine-tuning method, called cross-attention (StochCA), specific to Transformer architectures.
This method modifies the Transformer's self-attention mechanism to selectively utilize knowledge from pretrained models during fine-tuning.
Our experimental results show the superiority of StochCA over state-of-the-art approaches in both areas.
arXiv Detail & Related papers (2024-02-25T13:53:49Z) - Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness [52.9493817508055]
We propose Pre-trained Model Guided Adversarial Fine-Tuning (PMG-AFT) to enhance the model's zero-shot adversarial robustness.
Our approach consistently improves clean accuracy by an average of 8.72%.
arXiv Detail & Related papers (2024-01-09T04:33:03Z) - Robust Fine-Tuning of Vision-Language Models for Domain Generalization [6.7181844004432385]
Foundation models have impressive zero-shot inference capabilities and robustness under distribution shifts.
We present a new recipe for few-shot fine-tuning of the popular vision-language foundation model CLIP.
Our experimentation demonstrates that, while zero-shot CLIP fails to match performance of trained vision models on more complex benchmarks, few-shot CLIP fine-tuning outperforms its vision-only counterparts.
arXiv Detail & Related papers (2023-11-03T20:50:40Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Guiding The Last Layer in Federated Learning with Pre-Trained Models [18.382057374270143]
Federated Learning (FL) is an emerging paradigm that allows a model to be trained across a number of participants without sharing data.
We show that fitting a classification head using the Nearest Class Means (NCM) can be done exactly and orders of magnitude more efficiently than existing proposals.
arXiv Detail & Related papers (2023-06-06T18:02:02Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - Few-Shot Lifelong Learning [35.05196800623617]
Few-Shot Lifelong Learning enables deep learning models to perform lifelong/continual learning on few-shot data.
Our method selects very few parameters from the model for training every new set of classes instead of training the full model.
We experimentally show that our method significantly outperforms existing methods on the miniImageNet, CIFAR-100, and CUB-200 datasets.
arXiv Detail & Related papers (2021-03-01T13:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.