Challenges to Evaluating the Generalization of Coreference Resolution Models: A Measurement Modeling Perspective
- URL: http://arxiv.org/abs/2303.09092v2
- Date: Tue, 18 Jun 2024 16:19:36 GMT
- Title: Challenges to Evaluating the Generalization of Coreference Resolution Models: A Measurement Modeling Perspective
- Authors: Ian Porada, Alexandra Olteanu, Kaheer Suleman, Adam Trischler, Jackie Chi Kit Cheung,
- Abstract summary: We show how multi-dataset evaluations risk conflating different factors concerning what, precisely, is being measured.
This makes it difficult to draw more generalizable conclusions from these evaluations.
- Score: 69.50044040291847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is increasingly common to evaluate the same coreference resolution (CR) model on multiple datasets. Do these multi-dataset evaluations allow us to draw meaningful conclusions about model generalization? Or, do they rather reflect the idiosyncrasies of a particular experimental setup (e.g., the specific datasets used)? To study this, we view evaluation through the lens of measurement modeling, a framework commonly used in the social sciences for analyzing the validity of measurements. By taking this perspective, we show how multi-dataset evaluations risk conflating different factors concerning what, precisely, is being measured. This in turn makes it difficult to draw more generalizable conclusions from these evaluations. For instance, we show that across seven datasets, measurements intended to reflect CR model generalization are often correlated with differences in both how coreference is defined and how it is operationalized; this limits our ability to draw conclusions regarding the ability of CR models to generalize across any singular dimension. We believe the measurement modeling framework provides the needed vocabulary for discussing challenges surrounding what is actually being measured by CR evaluations.
Related papers
- Area under the ROC Curve has the Most Consistent Evaluation for Binary Classification [3.1850615666574806]
This study investigates how consistent different metrics are at evaluating models across data of different prevalence.
I find that evaluation metrics that are less influenced by prevalence offer more consistent evaluation of individual models and more consistent ranking of a set of models.
arXiv Detail & Related papers (2024-08-19T17:52:38Z) - Linking Robustness and Generalization: A k* Distribution Analysis of Concept Clustering in Latent Space for Vision Models [56.89974470863207]
This article uses the k* Distribution, a local neighborhood analysis method, to examine the learned latent space at the level of individual concepts.
We introduce skewness-based true and approximate metrics for interpreting individual concepts to assess the overall quality of vision models' latent space.
arXiv Detail & Related papers (2024-08-17T01:43:51Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Towards Reliable Assessments of Demographic Disparities in Multi-Label
Image Classifiers [11.973749734226852]
We consider multi-label image classification and, specifically, object categorization tasks.
Design choices and trade-offs for measurement involve more nuance than discussed in prior computer vision literature.
We identify several design choices that look merely like implementation details but significantly impact the conclusions of assessments.
arXiv Detail & Related papers (2023-02-16T20:34:54Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
Generalization captures a model's ability to classify unseen data.
Invariance measures consistency of model predictions on transformations of the data.
From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets.
arXiv Detail & Related papers (2022-07-14T17:08:25Z) - A Study on the Evaluation of Generative Models [19.18642459565609]
Implicit generative models, which do not return likelihood values, have become prevalent in recent years.
In this work, we study the evaluation metrics of generative models by generating a high-quality synthetic dataset.
Our study shows that while FID and IS do correlate to several f-divergences, their ranking of close models can vary considerably.
arXiv Detail & Related papers (2022-06-22T09:27:31Z) - An Empirical Study of Accuracy, Fairness, Explainability, Distributional
Robustness, and Adversarial Robustness [16.677541058361218]
We describe an empirical study to evaluate multiple model types on various metrics along these dimensions on several datasets.
Our results show that no particular model type performs well on all dimensions, and demonstrate the kinds of trade-offs involved in selecting models evaluated along multiple dimensions.
arXiv Detail & Related papers (2021-09-29T18:21:19Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Evaluation Metrics for Conditional Image Generation [100.69766435176557]
We present two new metrics for evaluating generative models in the class-conditional image generation setting.
A theoretical analysis shows the motivation behind each proposed metric and links the novel metrics to their unconditional counterparts.
We provide an extensive empirical evaluation, comparing the metrics to their unconditional variants and to other metrics, and utilize them to analyze existing generative models.
arXiv Detail & Related papers (2020-04-26T12:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.