An Empirical Study of Accuracy, Fairness, Explainability, Distributional
Robustness, and Adversarial Robustness
- URL: http://arxiv.org/abs/2109.14653v1
- Date: Wed, 29 Sep 2021 18:21:19 GMT
- Title: An Empirical Study of Accuracy, Fairness, Explainability, Distributional
Robustness, and Adversarial Robustness
- Authors: Moninder Singh, Gevorg Ghalachyan, Kush R. Varshney, Reginald E.
Bryant
- Abstract summary: We describe an empirical study to evaluate multiple model types on various metrics along these dimensions on several datasets.
Our results show that no particular model type performs well on all dimensions, and demonstrate the kinds of trade-offs involved in selecting models evaluated along multiple dimensions.
- Score: 16.677541058361218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To ensure trust in AI models, it is becoming increasingly apparent that
evaluation of models must be extended beyond traditional performance metrics,
like accuracy, to other dimensions, such as fairness, explainability,
adversarial robustness, and distribution shift. We describe an empirical study
to evaluate multiple model types on various metrics along these dimensions on
several datasets. Our results show that no particular model type performs well
on all dimensions, and demonstrate the kinds of trade-offs involved in
selecting models evaluated along multiple dimensions.
Related papers
- Assessing Robustness of Machine Learning Models using Covariate Perturbations [0.6749750044497732]
This paper proposes a comprehensive framework for assessing the robustness of machine learning models.
We explore various perturbation strategies to assess robustness and examine their impact on model predictions.
We demonstrate the effectiveness of our approach in comparing robustness across models, identifying the instabilities in the model, and enhancing model robustness.
arXiv Detail & Related papers (2024-08-02T14:41:36Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - An Empirical Investigation into Benchmarking Model Multiplicity for
Trustworthy Machine Learning: A Case Study on Image Classification [0.8702432681310401]
This paper offers a one-stop empirical benchmark of multiplicity across various dimensions of model design.
We also develop a framework, which we call multiplicity sheets, to benchmark multiplicity in various scenarios.
We show that multiplicity persists in deep learning models even after enforcing additional specifications during model selection.
arXiv Detail & Related papers (2023-11-24T22:30:38Z) - Think Twice: Measuring the Efficiency of Eliminating Prediction
Shortcuts of Question Answering Models [3.9052860539161918]
We propose a simple method for measuring a scale of models' reliance on any identified spurious feature.
We assess the robustness towards a large set of known and newly found prediction biases for various pre-trained models and debiasing methods in Question Answering (QA)
We find that while existing debiasing methods can mitigate reliance on a chosen spurious feature, the OOD performance gains of these methods can not be explained by mitigated reliance on biased features.
arXiv Detail & Related papers (2023-05-11T14:35:00Z) - Challenges to Evaluating the Generalization of Coreference Resolution Models: A Measurement Modeling Perspective [69.50044040291847]
We show how multi-dataset evaluations risk conflating different factors concerning what, precisely, is being measured.
This makes it difficult to draw more generalizable conclusions from these evaluations.
arXiv Detail & Related papers (2023-03-16T05:32:02Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.