A Generative Model for Digital Camera Noise Synthesis
- URL: http://arxiv.org/abs/2303.09199v3
- Date: Thu, 13 Jun 2024 10:43:49 GMT
- Title: A Generative Model for Digital Camera Noise Synthesis
- Authors: Mingyang Song, Yang Zhang, Tunç O. Aydın, Elham Amin Mansour, Christopher Schroers,
- Abstract summary: We propose an effective generative model which utilizes clean features as guidance followed by noise injections into the network.
Specifically, our generator follows a UNet-like structure with skip connections but without downsampling and upsampling layers.
We show that our proposed approach outperforms existing methods for synthesizing camera noise.
- Score: 12.236112464800403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Noise synthesis is a challenging low-level vision task aiming to generate realistic noise given a clean image along with the camera settings. To this end, we propose an effective generative model which utilizes clean features as guidance followed by noise injections into the network. Specifically, our generator follows a UNet-like structure with skip connections but without downsampling and upsampling layers. Firstly, we extract deep features from a clean image as the guidance and concatenate a Gaussian noise map to the transition point between the encoder and decoder as the noise source. Secondly, we propose noise synthesis blocks in the decoder in each of which we inject Gaussian noise to model the noise characteristics. Thirdly, we propose to utilize an additional Style Loss and demonstrate that this allows better noise characteristics supervision in the generator. Through a number of new experiments, we evaluate the temporal variance and the spatial correlation of the generated noise which we hope can provide meaningful insights for future works. Finally, we show that our proposed approach outperforms existing methods for synthesizing camera noise.
Related papers
- The Crystal Ball Hypothesis in diffusion models: Anticipating object positions from initial noise [92.53724347718173]
Diffusion models have achieved remarkable success in text-to-image generation tasks.
We identify specific regions within the initial noise image, termed trigger patches, that play a key role for object generation in the resulting images.
arXiv Detail & Related papers (2024-06-04T05:06:00Z) - Towards General Low-Light Raw Noise Synthesis and Modeling [37.87312467017369]
We introduce a new perspective to synthesize the signal-independent noise by a generative model.
Specifically, we synthesize the signal-dependent and signal-independent noise in a physics- and learning-based manner.
In this way, our method can be considered as a general model, that is, it can simultaneously learn different noise characteristics for different ISO levels.
arXiv Detail & Related papers (2023-07-31T09:10:10Z) - NoiseTransfer: Image Noise Generation with Contrastive Embeddings [9.322843611215486]
We propose a new generative model that can synthesize noisy images with multiple different noise distributions.
We adopt recent contrastive learning to learn distinguishable latent features of the noise.
Our model can generate new noisy images by transferring the noise characteristics solely from a single reference noisy image.
arXiv Detail & Related papers (2023-01-31T11:09:15Z) - Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images [35.29066692454865]
This paper proposes a framework for training a noise model and a denoiser simultaneously.
It relies on pairs of noisy images rather than noisy/clean paired image data.
The trained denoiser is shown to significantly improve upon both supervised and weakly supervised baseline denoising approaches.
arXiv Detail & Related papers (2022-06-02T15:31:40Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
We propose a novel framework, namely Pixel-level Noise-aware Generative Adrial Network (PNGAN)
PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space.
For better noise fitting, we present an efficient architecture Simple Multi-versa-scale Network (SMNet) as the generator.
arXiv Detail & Related papers (2022-04-06T14:09:02Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - C2N: Practical Generative Noise Modeling for Real-World Denoising [53.96391787869974]
We introduce a Clean-to-Noisy image generation framework, namely C2N, to imitate complex real-world noise without using paired examples.
We construct the noise generator in C2N accordingly with each component of real-world noise characteristics to express a wide range of noise accurately.
arXiv Detail & Related papers (2022-02-19T05:53:46Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Reconstructing the Noise Manifold for Image Denoising [56.562855317536396]
We introduce the idea of a cGAN which explicitly leverages structure in the image noise space.
By learning directly a low dimensional manifold of the image noise, the generator promotes the removal from the noisy image only that information which spans this manifold.
Based on our experiments, our model substantially outperforms existing state-of-the-art architectures.
arXiv Detail & Related papers (2020-02-11T00:31:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.