ELFIS: Expert Learning for Fine-grained Image Recognition Using Subsets
- URL: http://arxiv.org/abs/2303.09269v1
- Date: Thu, 16 Mar 2023 12:45:19 GMT
- Title: ELFIS: Expert Learning for Fine-grained Image Recognition Using Subsets
- Authors: Pablo Villacorta, Jes\'us M. Rodr\'iguez-de-Vera, Marc Bola\~nos,
Ignacio Saras\'ua, Bhalaji Nagarajan, Petia Radeva
- Abstract summary: We propose ELFIS, an expert learning framework for Fine-Grained Visual Recognition.
A set of neural networks-based experts are trained focusing on the meta-categories and are integrated into a multi-task framework.
Experiments show improvements in the SoTA FGVR benchmarks of up to +1.3% of accuracy using both CNNs and transformer-based networks.
- Score: 6.632855264705276
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fine-Grained Visual Recognition (FGVR) tackles the problem of distinguishing
highly similar categories. One of the main approaches to FGVR, namely subset
learning, tries to leverage information from existing class taxonomies to
improve the performance of deep neural networks. However, these methods rely on
the existence of handcrafted hierarchies that are not necessarily optimal for
the models. In this paper, we propose ELFIS, an expert learning framework for
FGVR that clusters categories of the dataset into meta-categories using both
dataset-inherent lexical and model-specific information. A set of neural
networks-based experts are trained focusing on the meta-categories and are
integrated into a multi-task framework. Extensive experimentation shows
improvements in the SoTA FGVR benchmarks of up to +1.3% of accuracy using both
CNNs and transformer-based networks. Overall, the obtained results evidence
that ELFIS can be applied on top of any classification model, enabling the
obtention of SoTA results. The source code will be made public soon.
Related papers
- Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
It consists in a multi-output deep neural network equipped with specific projection operators placed before each output layer.
The design of such an architecture, called lexicographic hybrid deep neural network (LH-DNN), has been possible by combining tools from different and quite distant research fields.
To assess the efficacy of the approach, the resulting network is compared against the B-CNN, a convolutional neural network tailored for hierarchical classification tasks.
arXiv Detail & Related papers (2024-09-25T14:12:50Z) - Subgraph Clustering and Atom Learning for Improved Image Classification [4.499833362998488]
We present the Graph Sub-Graph Network (GSN), a novel hybrid image classification model merging the strengths of Convolutional Neural Networks (CNNs) for feature extraction and Graph Neural Networks (GNNs) for structural modeling.
GSN employs k-means clustering to group graph nodes into clusters, facilitating the creation of subgraphs.
These subgraphs are then utilized to learn representative atoms for dictionary learning, enabling the identification of sparse, class-distinguishable features.
arXiv Detail & Related papers (2024-07-20T06:32:00Z) - Guiding Generative Language Models for Data Augmentation in Few-Shot
Text Classification [59.698811329287174]
We leverage GPT-2 for generating artificial training instances in order to improve classification performance.
Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements.
arXiv Detail & Related papers (2021-11-17T12:10:03Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Cross-layer Navigation Convolutional Neural Network for Fine-grained
Visual Classification [21.223130735592516]
Fine-grained visual classification (FGVC) aims to classify sub-classes of objects in the same super-class.
For the FGVC tasks, the essential solution is to find discriminative subtle information of the target from local regions.
We propose cross-layer navigation convolutional neural network for feature fusion.
arXiv Detail & Related papers (2021-06-21T08:38:27Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - PK-GCN: Prior Knowledge Assisted Image Classification using Graph
Convolution Networks [3.4129083593356433]
Similarity between classes can influence the performance of classification.
We propose a method that incorporates class similarity knowledge into convolutional neural networks models.
Experimental results show that our model can improve classification accuracy, especially when the amount of available data is small.
arXiv Detail & Related papers (2020-09-24T18:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.