論文の概要: Unsupervised domain adaptation by learning using privileged information
- arxiv url: http://arxiv.org/abs/2303.09350v3
- Date: Wed, 12 Jun 2024 08:40:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 01:52:33.854732
- Title: Unsupervised domain adaptation by learning using privileged information
- Title(参考訳): 特権情報を用いた学習による教師なしドメイン適応
- Authors: Adam Breitholtz, Anton Matsson, Fredrik D. Johansson,
- Abstract要約: 補助変数による側情報への訓練時間アクセスは,入力変数の制約緩和に有効であることを示す。
本稿では,対象領域における予測誤差の分析から着想を得た単純な2段階学習アルゴリズムと,画像分類のための実用的エンドツーエンド変種を提案する。
- 参考スコア(独自算出の注目度): 6.748420131629902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Successful unsupervised domain adaptation is guaranteed only under strong assumptions such as covariate shift and overlap between input domains. The latter is often violated in high-dimensional applications like image classification which, despite this limitation, continues to serve as inspiration and benchmark for algorithm development. In this work, we show that training-time access to side information in the form of auxiliary variables can help relax restrictions on input variables and increase the sample efficiency of learning at the cost of collecting a richer variable set. As this information is assumed available only during training, not in deployment, we call this problem unsupervised domain adaptation by learning using privileged information (DALUPI). To solve this problem, we propose a simple two-stage learning algorithm, inspired by our analysis of the expected error in the target domain, and a practical end-to-end variant for image classification. We propose three evaluation tasks based on classification of entities in photos and anomalies in medical images with different types of available privileged information (binary attributes and single or multiple regions of interest). We demonstrate across these tasks that using privileged information in learning can reduce errors in domain transfer compared to baselines, be robust to spurious correlations in the source domain, and increase sample efficiency.
- Abstract(参考訳): 教師なしドメイン適応の成功は、共変量シフトや入力ドメイン間の重複といった強い仮定の下でのみ保証される。
後者は、画像分類のような高次元のアプリケーションではしばしば違反されるが、この制限にもかかわらず、アルゴリズム開発のためのインスピレーションとベンチマークとして機能し続けている。
本研究では,補助変数による側情報への訓練時間アクセスは,入力変数の制約を緩和し,よりリッチな変数集合を収集するコストで学習のサンプル効率を向上させることに役立つことを示す。
この情報は、訓練中のみ利用可能であり、デプロイ中ではないと仮定されるので、特権情報(DALUPI)を用いて学習することで、ドメイン適応を教師なしと呼ぶ。
そこで本研究では,対象領域における予測誤差の分析から着想を得た,単純な2段階学習アルゴリズムと,画像分類のための実用的エンドツーエンド変種を提案する。
本稿では,異なる種類の特権情報(バイナリ属性,単一領域,複数領域)を持つ医用画像における画像および異常領域のエンティティの分類に基づく3つの評価課題を提案する。
学習に特権情報を用いることで、ベースラインと比較してドメイン転送のエラーを減らし、ソースドメインの急激な相関に頑健になり、サンプル効率が向上することを示す。
関連論文リスト
- Learning to Discover Knowledge: A Weakly-Supervised Partial Domain Adaptation Approach [20.899013563493202]
ドメイン適応は、リッチアノテーションでソースドメインからの知識を活用することで、魅力的なパフォーマンスを示している。
特定の目標タスクに対して、関連するおよび高品質なソースドメインを収集するのは煩雑である。
本稿では、自己ペースト転送分類器学習(SP-TCL)と呼ばれる、単純で効果的なドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T12:54:07Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Domain Adaptive Semantic Segmentation without Source Data [50.18389578589789]
モデルがソースドメイン上で事前学習されていることを前提として、ソースデータのないドメイン適応セマンティックセマンティックセマンティックセマンティクスについて検討する。
本稿では,この課題に対して,肯定的学習と否定的学習という2つの要素を用いた効果的な枠組みを提案する。
私たちのフレームワークは、パフォーマンスをさらに向上するために、他のメソッドに簡単に実装および組み込むことができます。
論文 参考訳(メタデータ) (2021-10-13T04:12:27Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Weak Adaptation Learning -- Addressing Cross-domain Data Insufficiency
with Weak Annotator [2.8672054847109134]
一部のターゲット問題ドメインでは、学習プロセスを妨げる可能性のあるデータサンプルがあまりありません。
類似のソースドメインからのラベルなしデータを活用した弱い適応学習(wal)手法を提案する。
本実験は,対象領域に限定されたラベル付きデータを含む正確な分類器を学習する手法の有効性を示す。
論文 参考訳(メタデータ) (2021-02-15T06:19:25Z) - Self-Supervised Domain Adaptation with Consistency Training [0.2462953128215087]
画像分類における教師なし領域適応の問題点を考察する。
ラベルのないデータをある種の変換で拡張することにより、自己教師付きプレテキストタスクを作成する。
我々は、拡張データの表現を元のデータと整合するように強制する。
論文 参考訳(メタデータ) (2020-10-15T06:03:47Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
大規模ラベル付きトレーニングデータセットにより、ディープニューラルネットワークは、幅広いベンチマークビジョンタスクを拡張できるようになった。
多くのアプリケーションにおいて、大量のラベル付きデータを取得するのは非常に高価で時間を要する。
限られたラベル付きトレーニングデータに対処するため、大規模ラベル付きソースドメインでトレーニングされたモデルを、疎ラベルまたは未ラベルのターゲットドメインに直接適用しようと試みている人も多い。
論文 参考訳(メタデータ) (2020-09-01T00:06:50Z) - Generalized Zero-Shot Domain Adaptation via Coupled Conditional
Variational Autoencoders [23.18781318003242]
本研究では,新しい条件結合型変分自動エンコーダ(CCVAE)を提案する。
航空セキュリティにおける現実の応用をシミュレートするために、X線セキュリティチェックポイントデータセットを含む3つのドメイン適応データセットで実験が行われた。
論文 参考訳(メタデータ) (2020-08-03T21:48:50Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
このタスクの重要な課題は、ソースとターゲットドメイン間のデータ分散の相違を緩和する方法である。
本稿では,グローバルな視点とローカルな視点の両方から分布の整合性を促進できるASS(Alleviating Semantic-level Shift)を提案する。
GTA5、Cityscapes、Synthia、Cityscapesの2つのドメイン適応タスクにASSを適用します。
論文 参考訳(メタデータ) (2020-04-02T03:25:05Z) - Exploring Categorical Regularization for Domain Adaptive Object
Detection [27.348272177261233]
ドメイン適応オブジェクト検出のための分類規則化フレームワークを提案する。
一連のAdaptive Domain Faster R-CNNメソッドのプラグイン・アンド・プレイコンポーネントとして適用することができる。
提案手法は、元のDomain Adaptive Faster R-CNN検出器よりも優れた性能を得る。
論文 参考訳(メタデータ) (2020-03-20T08:53:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。