Algebraic Compression of Free Fermionic Quantum Circuits: Particle
Creation, Arbitrary Lattices and Controlled Evolution
- URL: http://arxiv.org/abs/2303.09538v1
- Date: Thu, 16 Mar 2023 17:52:59 GMT
- Title: Algebraic Compression of Free Fermionic Quantum Circuits: Particle
Creation, Arbitrary Lattices and Controlled Evolution
- Authors: Efekan K\"okc\"u, Daan Camps, Lindsay Bassman Oftelie, Wibe A. de
Jong, Roel Van Beeumen, A. F. Kemper
- Abstract summary: We develop an algorithm for compressing Trotterized evolution under Hamiltonians.
We extend the algorithm to compress circuits simulating evolution with long-range spin interactions and fermionic hopping.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently we developed a local and constructive algorithm based on Lie
algebraic methods for compressing Trotterized evolution under Hamiltonians that
can be mapped to free fermions. The compression algorithm yields a circuit
which scales linearly in the number of qubits, is fixed depth for for
arbitrarily long evolution times and is applicable to time dependent
Hamiltonians, although is limited to simple nearest-neighbor spin interactions
and fermionic hopping. In this work, we extend the algorithm to compress
circuits simulating evolution with long-range spin interactions and fermionic
hopping, thereby enabling embedding of arbitrary lattices onto a chain of
qubits. Moreover, we show that controlled time evolution, as well as fermion
creation and annihilation operators can also be compressed. We demonstrate our
results by adiabatically preparing the ground state for a half-filled fermionic
chain, and simulating a $4 \times 4$ tight binding model on ibmq_washington.
With these new developments, our results enable the simulation of a wider range
of models of interest and the efficient compression of subcircuits.
Related papers
- Simulating Schwinger model dynamics with quasi-one-dimensional qubit arrays [0.0]
We develop a strategy to run Schwinger model dynamics on synthetic quantum spin lattices.
We show that global magnetic field patterns can drive coherent quantum dynamics of the interface equivalent to the lattice Schwinger Hamiltonian.
This work opens up a path for near-term quantum simulators to address questions of immediate relevance to particle physics.
arXiv Detail & Related papers (2024-09-22T17:58:25Z) - Spectral Density Modulation and Universal Markovian Closure of Fermionic Environments [0.6990493129893112]
We show how a thermo-chemical modulation of the spectral density allows replacing the original fermionic environments with simpler, but simpler, ones.
We then provide a derivation of the fermionic Markovian closure construction, consisting of a small collection of damped fermionic modes.
We describe, in particular, how the use of the Markovian closure allows for a reduction of the time complexity of chain-mapping based algorithms.
arXiv Detail & Related papers (2024-07-13T22:13:44Z) - Dissipation-enabled bosonic Hamiltonian learning via new
information-propagation bounds [1.0499611180329802]
We show that a bosonic Hamiltonian can be efficiently learned from simple quantum experiments.
Our work demonstrates that a broad class of bosonic Hamiltonians can be efficiently learned from simple quantum experiments.
arXiv Detail & Related papers (2023-07-27T17:35:07Z) - Simulating scalar field theories on quantum computers with limited
resources [62.997667081978825]
We present a quantum algorithm for implementing $phi4$ lattice scalar field theory on qubit computers.
The algorithm allows efficient $phi4$ state preparation for a large range of input parameters in both the normal and broken symmetry phases.
arXiv Detail & Related papers (2022-10-14T17:28:15Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum supremacy regime for compressed fermionic models [0.0]
We identify a class of quadratic fermionic Hamiltonians that can be simulated in compressed space.
In particular, for systems of $n$ orbitals encoded to 2-local qubit models with nearest neighbour interactions, the ground state energy can be evaluated.
We find a regime of quantum supremacy for sampling compressed Gaussian fermionic models.
arXiv Detail & Related papers (2021-10-18T18:02:05Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.