Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation
- URL: http://arxiv.org/abs/2412.20338v1
- Date: Sun, 29 Dec 2024 03:34:53 GMT
- Title: Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation
- Authors: Hao Zhang, Hao Wang, Xiucai Huang, Wenrui Chen, Zhen Kan,
- Abstract summary: Reinforcement Learning (RL) based methods have been increasingly explored for robot learning.
We propose a Temporal-Logic-guided Hybrid policy framework (HyTL) which leverages three-level decision layers to improve the agent's performance.
We evaluate HyTL on four challenging manipulation tasks, which demonstrate its effectiveness and interpretability.
- Score: 12.243491328213217
- License:
- Abstract: Reinforcement Learning (RL) based methods have been increasingly explored for robot learning. However, RL based methods often suffer from low sampling efficiency in the exploration phase, especially for long-horizon manipulation tasks, and generally neglect the semantic information from the task level, resulted in a delayed convergence or even tasks failure. To tackle these challenges, we propose a Temporal-Logic-guided Hybrid policy framework (HyTL) which leverages three-level decision layers to improve the agent's performance. Specifically, the task specifications are encoded via linear temporal logic (LTL) to improve performance and offer interpretability. And a waypoints planning module is designed with the feedback from the LTL-encoded task level as a high-level policy to improve the exploration efficiency. The middle-level policy selects which behavior primitives to execute, and the low-level policy specifies the corresponding parameters to interact with the environment. We evaluate HyTL on four challenging manipulation tasks, which demonstrate its effectiveness and interpretability. Our project is available at: https://sites.google.com/view/hytl-0257/.
Related papers
- Sample-Efficient Reinforcement Learning with Temporal Logic Objectives: Leveraging the Task Specification to Guide Exploration [13.053013407015628]
This paper addresses the problem of learning optimal control policies for systems with uncertain dynamics.
We propose an accelerated RL algorithm that can learn control policies significantly faster than competitive approaches.
arXiv Detail & Related papers (2024-10-16T00:53:41Z) - Spatial Reasoning and Planning for Deep Embodied Agents [2.7195102129095003]
This thesis explores the development of data-driven techniques for spatial reasoning and planning tasks.
It focuses on enhancing learning efficiency, interpretability, and transferability across novel scenarios.
arXiv Detail & Related papers (2024-09-28T23:05:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
We present Efficient Learning of High-Level Plans from Play (ELF-P), a framework for robotic learning that bridges motion planning and deep RL.
We demonstrate that ELF-P has significantly better sample efficiency than relevant baselines over multiple realistic manipulation tasks.
arXiv Detail & Related papers (2023-03-16T20:09:47Z) - Task-Agnostic Continual Reinforcement Learning: Gaining Insights and
Overcoming Challenges [27.474011433615317]
Continual learning (CL) enables the development of models and agents that learn from a sequence of tasks.
We investigate the factors that contribute to the performance differences between task-agnostic CL and multi-task (MTL) agents.
arXiv Detail & Related papers (2022-05-28T17:59:00Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Accelerated Reinforcement Learning for Temporal Logic Control Objectives [10.216293366496688]
This paper addresses the problem of learning control policies for mobile robots modeled as unknown Markov Decision Processes (MDPs)
We propose a novel accelerated model-based reinforcement learning (RL) algorithm for control objectives that is capable of learning control policies significantly faster than related approaches.
arXiv Detail & Related papers (2022-05-09T17:09:51Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.