論文の概要: A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset
- arxiv url: http://arxiv.org/abs/2303.09703v1
- Date: Fri, 17 Mar 2023 00:24:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-20 15:58:14.951994
- Title: A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset
- Title(参考訳): 異常検出のためのBi-LSTMオートエンコーダフレームワーク-風力発電データの一事例
- Authors: Ahmed Shoyeb Raihan and Imtiaz Ahmed
- Abstract要約: 異常(英: Anomalies)とは、通常および同質の事象から逸脱するデータポイントまたはイベントを指す。
本研究では,Bi-LSTMアーキテクチャとAutoencoderを組み合わせた時系列異常検出フレームワークを提案する。
Bi-LSTM Autoencoderモデルは96.79%の分類精度を達成し、より一般的なLSTM Autoencoderモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 2.094022863940315
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Anomalies refer to data points or events that deviate from normal and
homogeneous events, which can include fraudulent activities, network
infiltrations, equipment malfunctions, process changes, or other significant
but infrequent events. Prompt detection of such events can prevent potential
losses in terms of finances, information, and human resources. With the
advancement of computational capabilities and the availability of large
datasets, anomaly detection has become a major area of research. Among these,
anomaly detection in time series has gained more attention recently due to the
added complexity imposed by the time dimension. This study presents a novel
framework for time series anomaly detection using a combination of
Bidirectional Long Short Term Memory (Bi-LSTM) architecture and Autoencoder.
The Bi-LSTM network, which comprises two unidirectional LSTM networks, can
analyze the time series data from both directions and thus effectively discover
the long-term dependencies hidden in the sequential data. Meanwhile, the
Autoencoder mechanism helps to establish the optimal threshold beyond which an
event can be classified as an anomaly. To demonstrate the effectiveness of the
proposed framework, it is applied to a real-world multivariate time series
dataset collected from a wind farm. The Bi-LSTM Autoencoder model achieved a
classification accuracy of 96.79% and outperformed more commonly used LSTM
Autoencoder models.
- Abstract(参考訳): 異常(英: Anomalies)とは、不正な活動、ネットワークの侵入、機器の故障、プロセスの変更、その他重要で頻繁な出来事を含む、通常の出来事から逸脱するデータポイントまたはイベントを指す。
このような事象の急激な検出は、財務、情報、人的資源の面での潜在的な損失を防ぐことができる。
計算能力の進歩と大規模データセットの可用性により、異常検出は主要な研究分野となっている。
これらのうち、時間次元による複雑さの増大により、近年、時系列における異常検出が注目されている。
本研究では,Bidirectional Long Short Term Memory (Bi-LSTM)アーキテクチャとAutoencoderを組み合わせた時系列異常検出フレームワークを提案する。
2つの一方向LSTMネットワークからなるBi-LSTMネットワークは、両方の方向から時系列データを解析し、シーケンシャルデータに隠された長期的な依存関係を効果的に発見することができる。
一方、Autoencoderメカニズムは、イベントを異常として分類する以上の最適なしきい値を確立するのに役立つ。
提案手法の有効性を示すため,風力発電所から収集した実世界の多変量時系列データセットに適用した。
Bi-LSTM Autoencoderモデルは96.79%の分類精度を達成し、より一般的なLSTM Autoencoderモデルよりも優れていた。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - TSI-GAN: Unsupervised Time Series Anomaly Detection using Convolutional
Cycle-Consistent Generative Adversarial Networks [2.4469484645516837]
異常検出は、ネットワーク侵入検知、自律運転、診断、クレジットカード詐欺などに広く用いられている。
本稿では、複雑な時間パターンを自動的に学習できる時系列の教師なし異常検出モデルであるTSI-GANを提案する。
提案手法は,250個の高度・厳密なデータセットを用いてTSI-GANを評価し,最先端の8つのベースライン手法と比較した。
論文 参考訳(メタデータ) (2023-03-22T23:24:47Z) - Quantile LSTM: A Robust LSTM for Anomaly Detection In Time Series Data [0.0]
我々は、時間的長期依存性をモデル化するために、人気のあるLong Short Term Memory Network (LSTM) アーキテクチャで新しい学習可能なアクティベーション関数を使用する。
提案アルゴリズムは、分離フォレスト(iForest)、楕円エンベロープ、オートエンコーダ、およびDeep Autoencoding Gaussian Mixture Model (DAGMM)、Generative Adversarial Networks (GAN)のような現代のディープラーニングモデルなど、他のよく知られた異常検出アルゴリズムと比較される。
このアルゴリズムは、Yahoo、AWS、GE、マシンセンサーなど、複数の産業時系列データセットでテストされている。
論文 参考訳(メタデータ) (2023-02-17T06:03:16Z) - Denoising Architecture for Unsupervised Anomaly Detection in Time-Series [0.0]
このLSTM-Decoderモデルの補体として、Denoising Architectureを紹介します。
提案アーキテクチャは精度とトレーニング速度の両方を向上し,LSTMオートエンコーダを非教師付き異常検出タスクに対してより効率的にすることを示した。
論文 参考訳(メタデータ) (2022-08-30T15:23:45Z) - LSTM-Autoencoder based Anomaly Detection for Indoor Air Quality Time
Series Data [6.642599588462097]
室内空気質(IAQ)データの異常検出は、空気の質が人間の健康と健康と密接に関連しているため、研究の重要領域となっている。
IAQ領域における異常検出における従来の統計と機械学習に基づくアプローチは、複数のデータポイントにわたる相関の観測を含む異常を検出できなかった。
本稿では,LSTMとオートエンコーダを組み合わせたハイブリッドディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2022-04-14T01:57:46Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Multi-Scale One-Class Recurrent Neural Networks for Discrete Event
Sequence Anomaly Detection [63.825781848587376]
本稿では,離散イベントシーケンス中の異常を検出する1クラスリカレントニューラルネットワークOC4Seqを提案する。
具体的には、OC4Seqは離散イベントシーケンスを遅延空間に埋め込み、異常を容易に検出することができる。
論文 参考訳(メタデータ) (2020-08-31T04:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。