Adversarial Counterfactual Visual Explanations
- URL: http://arxiv.org/abs/2303.09962v1
- Date: Fri, 17 Mar 2023 13:34:38 GMT
- Title: Adversarial Counterfactual Visual Explanations
- Authors: Guillaume Jeanneret and Lo\"ic Simon and Fr\'ed\'eric Jurie
- Abstract summary: This paper proposes an elegant method to turn adversarial attacks into semantically meaningful perturbations.
The proposed approach hypothesizes that Denoising Diffusion Probabilistic Models are excellent regularizers for avoiding high-frequency and out-of-distribution perturbations.
- Score: 0.7366405857677227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual explanations and adversarial attacks have a related goal:
flipping output labels with minimal perturbations regardless of their
characteristics. Yet, adversarial attacks cannot be used directly in a
counterfactual explanation perspective, as such perturbations are perceived as
noise and not as actionable and understandable image modifications. Building on
the robust learning literature, this paper proposes an elegant method to turn
adversarial attacks into semantically meaningful perturbations, without
modifying the classifiers to explain. The proposed approach hypothesizes that
Denoising Diffusion Probabilistic Models are excellent regularizers for
avoiding high-frequency and out-of-distribution perturbations when generating
adversarial attacks. The paper's key idea is to build attacks through a
diffusion model to polish them. This allows studying the target model
regardless of its robustification level. Extensive experimentation shows the
advantages of our counterfactual explanation approach over current
State-of-the-Art in multiple testbeds.
Related papers
- Indiscriminate Disruption of Conditional Inference on Multivariate Gaussians [60.22542847840578]
Despite advances in adversarial machine learning, inference for Gaussian models in the presence of an adversary is notably understudied.
We consider a self-interested attacker who wishes to disrupt a decisionmaker's conditional inference and subsequent actions by corrupting a set of evidentiary variables.
To avoid detection, the attacker also desires the attack to appear plausible wherein plausibility is determined by the density of the corrupted evidence.
arXiv Detail & Related papers (2024-11-21T17:46:55Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
Adversarial purification is one of the promising approaches to defend neural networks against adversarial attacks.
We propose gUided Purification (COUP) algorithm, which purifies while keeping away from the classifier decision boundary.
Experimental results show that COUP can achieve better adversarial robustness under strong attack methods.
arXiv Detail & Related papers (2024-08-12T02:48:00Z) - AFLOW: Developing Adversarial Examples under Extremely Noise-limited
Settings [7.828994881163805]
deep neural networks (DNNs) are vulnerable to adversarial attacks.
We propose a novel Normalize Flow-based end-to-end attack framework, called AFLOW, to synthesize imperceptible adversarial examples.
Compared with existing methods, AFLOW exhibit superiority in imperceptibility, image quality and attack capability.
arXiv Detail & Related papers (2023-10-15T10:54:07Z) - Adversarial Attacks Against Uncertainty Quantification [10.655660123083607]
This work focuses on a different adversarial scenario in which the attacker is still interested in manipulating the uncertainty estimate.
In particular, the goal is to undermine the use of machine-learning models when their outputs are consumed by a downstream module or by a human operator.
arXiv Detail & Related papers (2023-09-19T12:54:09Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Localized Uncertainty Attacks [9.36341602283533]
We present localized uncertainty attacks against deep learning models.
We create adversarial examples by perturbing only regions in the inputs where a classifier is uncertain.
Unlike $ell_p$ ball or functional attacks which perturb inputs indiscriminately, our targeted changes can be less perceptible.
arXiv Detail & Related papers (2021-06-17T03:07:22Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
Deep neural networks (DNNs) are vulnerable to adversarial noise.
adversarial robustness can be improved by exploiting adversarial examples.
Models trained on seen types of adversarial examples generally cannot generalize well to unseen types of adversarial examples.
arXiv Detail & Related papers (2021-06-09T12:49:54Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
We present a new approach to improve the robustness of a model against black-box transfer attacks.
A removable additional neural network is included in the target model, and is designed to induce the textitluring effect.
Our deception-based method only needs to have access to the predictions of the target model and does not require a labeled data set.
arXiv Detail & Related papers (2020-04-10T06:48:36Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
Adversarial examples are malicious inputs crafted to induce misclassification.
This paper studies a complementary failure mode, invariance-based adversarial examples.
We show that defenses against sensitivity-based attacks actively harm a model's accuracy on invariance-based attacks.
arXiv Detail & Related papers (2020-02-11T18:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.