AFLOW: Developing Adversarial Examples under Extremely Noise-limited
Settings
- URL: http://arxiv.org/abs/2310.09795v1
- Date: Sun, 15 Oct 2023 10:54:07 GMT
- Title: AFLOW: Developing Adversarial Examples under Extremely Noise-limited
Settings
- Authors: Renyang Liu, Jinhong Zhang, Haoran Li, Jin Zhang, Yuanyu Wang, Wei
Zhou
- Abstract summary: deep neural networks (DNNs) are vulnerable to adversarial attacks.
We propose a novel Normalize Flow-based end-to-end attack framework, called AFLOW, to synthesize imperceptible adversarial examples.
Compared with existing methods, AFLOW exhibit superiority in imperceptibility, image quality and attack capability.
- Score: 7.828994881163805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extensive studies have demonstrated that deep neural networks (DNNs) are
vulnerable to adversarial attacks. Despite the significant progress in the
attack success rate that has been made recently, the adversarial noise
generated by most of the existing attack methods is still too conspicuous to
the human eyes and proved to be easily detected by defense mechanisms.
Resulting that these malicious examples cannot contribute to exploring the
vulnerabilities of existing DNNs sufficiently. Thus, to better reveal the
defects of DNNs and further help enhance their robustness under noise-limited
situations, a new inconspicuous adversarial examples generation method is
exactly needed to be proposed. To bridge this gap, we propose a novel Normalize
Flow-based end-to-end attack framework, called AFLOW, to synthesize
imperceptible adversarial examples under strict constraints. Specifically,
rather than the noise-adding manner, AFLOW directly perturbs the hidden
representation of the corresponding image to craft the desired adversarial
examples. Compared with existing methods, extensive experiments on three
benchmark datasets show that the adversarial examples built by AFLOW exhibit
superiority in imperceptibility, image quality and attack capability. Even on
robust models, AFLOW can still achieve higher attack results than previous
methods.
Related papers
- Detecting Adversarial Examples [24.585379549997743]
We propose a novel method to detect adversarial examples by analyzing the layer outputs of Deep Neural Networks.
Our method is highly effective, compatible with any DNN architecture, and applicable across different domains, such as image, video, and audio.
arXiv Detail & Related papers (2024-10-22T21:42:59Z) - STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
We propose the Spatial Transform Black-box Attack (STBA) to craft formidable adversarial examples in the query-limited scenario.
We show that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate under query-limited settings.
arXiv Detail & Related papers (2024-03-30T13:28:53Z) - Transcending Adversarial Perturbations: Manifold-Aided Adversarial
Examples with Legitimate Semantics [10.058463432437659]
Deep neural networks were significantly vulnerable to adversarial examples manipulated by malicious tiny perturbations.
In this paper, we propose a supervised semantic-transformation generative model to generate adversarial examples with real and legitimate semantics.
Experiments on MNIST and industrial defect datasets showed that our adversarial examples not only exhibited better visual quality but also achieved superior attack transferability.
arXiv Detail & Related papers (2024-02-05T15:25:40Z) - LFAA: Crafting Transferable Targeted Adversarial Examples with
Low-Frequency Perturbations [25.929492841042666]
We present a novel approach to generate transferable targeted adversarial examples.
We exploit the vulnerability of deep neural networks to perturbations on high-frequency components of images.
Our proposed approach significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-10-31T04:54:55Z) - Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
We propose an adversarial example detection framework based on a high-frequency information enhancement strategy.
This framework can effectively extract and amplify the feature differences between adversarial examples and normal examples.
arXiv Detail & Related papers (2023-05-08T03:14:01Z) - Adversarial Counterfactual Visual Explanations [0.7366405857677227]
This paper proposes an elegant method to turn adversarial attacks into semantically meaningful perturbations.
The proposed approach hypothesizes that Denoising Diffusion Probabilistic Models are excellent regularizers for avoiding high-frequency and out-of-distribution perturbations.
arXiv Detail & Related papers (2023-03-17T13:34:38Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - A Frequency Perspective of Adversarial Robustness [72.48178241090149]
We present a frequency-based understanding of adversarial examples, supported by theoretical and empirical findings.
Our analysis shows that adversarial examples are neither in high-frequency nor in low-frequency components, but are simply dataset dependent.
We propose a frequency-based explanation for the commonly observed accuracy vs. robustness trade-off.
arXiv Detail & Related papers (2021-10-26T19:12:34Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Adversarial Examples Detection beyond Image Space [88.7651422751216]
We find that there exists compliance between perturbations and prediction confidence, which guides us to detect few-perturbation attacks from the aspect of prediction confidence.
We propose a method beyond image space by a two-stream architecture, in which the image stream focuses on the pixel artifacts and the gradient stream copes with the confidence artifacts.
arXiv Detail & Related papers (2021-02-23T09:55:03Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
We demonstrate that the state-of-the-art gait recognition model is vulnerable to such attacks.
We employ a generative adversarial network based architecture to semantically generate adversarial high-quality gait silhouettes or video frames.
The experimental results show that if only one-fortieth of the frames are attacked, the accuracy of the target model drops dramatically.
arXiv Detail & Related papers (2020-02-22T10:08:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.